Resolving complex eco-evolutionary dynamics of aquatic ecosystems faced with human-induced and environmental alterations (COMPLEX-FISH)

Main funder

Funder's project number770884

Funds granted by main funder (€)

  • 1 999 391,00

Funding program

Project timetable

Project start date01/06/2018

Project end date31/08/2024


Species ability to resist changes and to recover from disturbance are key determinants of species persistence and viability in a changing world. Populations exposed to rapid environmental changes and human-induced alterations are often affected by both ecological and evolutionary processes and their interactions, that is, eco-evolutionary dynamics. This integrated perspective is vital for understanding drivers of resilience and recovery of natural populations, but knowledge about the dynamic feedback mechanisms and the ways in which evolution and phenotypic changes scale up to interacting species and ecosystems remains poorly understood. The overarching concept of my proposal is to bridge and close this gap by merging the fields of ecology and evolution into a single concept of complex biological dynamics. I will do this in the context of conservation and sustainable harvest of aquatic ecosystems. I will develop a novel mechanistic theory of eco-evolutionary ecosystem dynamics, by coupling the theory of allometric trophic networks with the theory of life-history evolution. I will analyse eco-evolutionary dynamics of aquatic ecosystems, to identify mechanisms responsible for species and ecosystem resilience and recovery ability. This will be done through systematic simulation studies as well as detailed analyses of three empirical ecosystems. The project delves into the pathways and mechanisms through which anthropogenic and environmental drivers alter the biological dynamics of aquatic ecosystems. Mechanistic understanding of such dynamics has great potential to resolve fundamental yet puzzling patterns observed in natural populations, such as the key drivers of resilience and recovery. Identifying traits and species and ecosystem properties regulating resilience and recovery ability will drastically change our ability to assess the risks related to current and future anthropogenic and environmental influences to which aquatic ecosystems are likely to be exposed.

Principal Investigator

Primary responsible unit

Follow-up groups

Related publications and other outputs

Go to first page
Go to previous page
1 of 4
Go to next page
Go to last page

Last updated on 2024-01-07 at 07:03