Geometric Aspects of Sobolev Space Theory (GeoSobo)
Main funder
Funder's project number: 314789
Funds granted by main funder (€)
- 600 000,00
Funding program
Project timetable
Project start date: 01/09/2018
Project end date: 31/08/2022
Summary
The purpose of the project is to find new connections of Sobolev spaces theory with geometry and regularity in Euclidean spaces and in more general metric measure spaces. We study curvature, regularity of harmonic functions, differentiability of Lipschitz maps, removable sets and extension domains.
Principal Investigator
Primary responsible unit
Related publications
- Abstract and concrete tangent modules on Lipschitz differentiability spaces (2022) Ikonen, Toni; et al.; A1; OA
- Bi-Lipschitz invariance of planar BV- and W1,1-extension domains (2022) García-Bravo, Miguel; et al.; A1; OA
- Non-Hilbertian tangents to Hilbertian spaces (2022) Lučić, Danka; et al.; A1; OA
- Testing the Sobolev property with a single test plan (2022) Pasqualetto, Enrico; A1; OA
- Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds (2022) Le Donne, Enrico; et al.; A1; OA
- A density result on Orlicz-Sobolev spaces in the plane (2021) Ortiz, Walter A.; et al.; A1; OA
- Approximation by uniform domains in doubling quasiconvex metric spaces (2021) Rajala, Tapio; A1; OA
- Characterisation of upper gradients on the weighted Euclidean space and applications (2021) Lučić, Danka; et al.; A1; OA
- Dimension estimates for the boundary of planar Sobolev extension domains (2021) Lučić, Danka; et al.; A1; OA
- On one-dimensionality of metric measure spaces (2021) Schultz, Timo; A1; OA