A3 Kirjan tai muun kokoomateoksen osa
Generation of Error Indicators for Partial Differential Equations by Machine Learning Methods (2022)
Muzalevskiy, A., Neittaanmäki, P., & Repin, S. (2022). Generation of Error Indicators for Partial Differential Equations by Machine Learning Methods. In T. T. Tuovinen, J. Periaux, & P. Neittaanmäki (Eds.), Computational Sciences and Artificial Intelligence in Industry : New Digital Technologies for Solving Future Societal and Economical Challenges (pp. 63-96). Springer. Intelligent Systems, Control and Automation: Science and Engineering, 76. https://doi.org/10.1007/978-3-030-70787-3_6
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Muzalevskiy, Alexey; Neittaanmäki, Pekka; Repin, Sergey
Emojulkaisu: Computational Sciences and Artificial Intelligence in Industry : New Digital Technologies for Solving Future Societal and Economical Challenges
Emojulkaisun toimittajat: Tuovinen, Tero T.; Periaux, Jacques; Neittaanmäki, Pekka
ISBN: 978-3-030-70786-6
eISBN: 978-3-030-70787-3
Lehti tai sarja: Intelligent Systems, Control and Automation: Science and Engineering
ISSN: 2213-8986
eISSN: 2213-8994
Julkaisuvuosi: 2022
Sarjan numero: 76
Artikkelin sivunumerot: 63-96
Kirjan kokonaissivumäärä: 275
Kustantaja: Springer
Kustannuspaikka: Cham
Julkaisumaa: Sveitsi
Julkaisun kieli: englanti
DOI: https://doi.org/10.1007/978-3-030-70787-3_6
Julkaisun avoin saatavuus: Ei avoin
Julkaisukanavan avoin saatavuus:
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/84830
Lisätietoja: The CSAI 2019 Conference (Computational Science and AI in Industry: New Digital Technologies for Solving Future Societal and Economical Challenges) took place at Jyväskylä, Finland, on June 12–14, 2019.
Tiivistelmä
Computer simulation methods for models based on partial differential equations usually apply adaptive strategies that generate sequences of approximations for consequently refined meshes. In this process, error indicators play a crucial role because a new (refined) mesh is created by analysis of an approximate solution computed for the previous (coarser) mesh. Different error indicators exploit various analytical and heuristic arguments. The main goal of this paper is to show that effective indicators of approximation errors can be created by machine learning methods and presented by relatively simple networks. We use the “supervised learning” conception where sequences of teaching examples are constructed due to earlier developed tools of a posteriori error analysis known as “functional type error majorants”. Insensitivity to specific features of approximations is an important property of error majorants, which allows us to generate arbitrarily long series of diverse training examples without restrictions on the type of approximate solutions. These new (network) error indicators are compared with known indicators. The results show that after a proper machine learning procedure, we obtain a network with the same (or even better) quality of error indication level as the most efficient indicators used in classical computer simulation methods. The final trained network is approximately as effective as the gradient averaging error indicator, but has an important advantage because it is valid for a much wider set of approximate solutions.
YSO-asiasanat: matemaattiset mallit; simulointi; osittaisdifferentiaaliyhtälöt; approksimointi; virheanalyysi; koneoppiminen
Vapaat asiasanat: mesh adaptive methods; machine learning; network error indicator
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2022
JUFO-taso: 2
Emojulkaisu, jossa JYU-tekijöitä:
- Tuovinen, T. T., Periaux, J., & Neittaanmäki, P. (Eds.). (2022). Computational Sciences and Artificial Intelligence in Industry : New Digital Technologies for Solving Future Societal and Economical Challenges. Springer. Intelligent Systems, Control and Automation: Science and Engineering, 76. https://doi.org/10.1007/978-3-030-70787-3