A3 Kirjan tai muun kokoomateoksen osa
Generation of Error Indicators for Partial Differential Equations by Machine Learning Methods (2022)


Muzalevskiy, A., Neittaanmäki, P., & Repin, S. (2022). Generation of Error Indicators for Partial Differential Equations by Machine Learning Methods. In T. T. Tuovinen, J. Periaux, & P. Neittaanmäki (Eds.), Computational Sciences and Artificial Intelligence in Industry : New Digital Technologies for Solving Future Societal and Economical Challenges (pp. 63-96). Springer. Intelligent Systems, Control and Automation: Science and Engineering, 76. https://doi.org/10.1007/978-3-030-70787-3_6


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatMuzalevskiy, Alexey; Neittaanmäki, Pekka; Repin, Sergey

EmojulkaisuComputational Sciences and Artificial Intelligence in Industry : New Digital Technologies for Solving Future Societal and Economical Challenges

Emojulkaisun toimittajatTuovinen, Tero T.; Periaux, Jacques; Neittaanmäki, Pekka

ISBN978-3-030-70786-6

eISBN978-3-030-70787-3

Lehti tai sarjaIntelligent Systems, Control and Automation: Science and Engineering

ISSN2213-8986

eISSN2213-8994

Julkaisuvuosi2022

Sarjan numero76

Artikkelin sivunumerot63-96

Kirjan kokonaissivumäärä275

KustantajaSpringer

KustannuspaikkaCham

JulkaisumaaSveitsi

Julkaisun kielienglanti

DOIhttps://doi.org/10.1007/978-3-030-70787-3_6

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/84830

LisätietojaThe CSAI 2019 Conference (Computational Science and AI in Industry: New Digital Technologies for Solving Future Societal and Economical Challenges) took place at Jyväskylä, Finland, on June 12–14, 2019.


Tiivistelmä

Computer simulation methods for models based on partial differential equations usually apply adaptive strategies that generate sequences of approximations for consequently refined meshes. In this process, error indicators play a crucial role because a new (refined) mesh is created by analysis of an approximate solution computed for the previous (coarser) mesh. Different error indicators exploit various analytical and heuristic arguments. The main goal of this paper is to show that effective indicators of approximation errors can be created by machine learning methods and presented by relatively simple networks. We use the “supervised learning” conception where sequences of teaching examples are constructed due to earlier developed tools of a posteriori error analysis known as “functional type error majorants”. Insensitivity to specific features of approximations is an important property of error majorants, which allows us to generate arbitrarily long series of diverse training examples without restrictions on the type of approximate solutions. These new (network) error indicators are compared with known indicators. The results show that after a proper machine learning procedure, we obtain a network with the same (or even better) quality of error indication level as the most efficient indicators used in classical computer simulation methods. The final trained network is approximately as effective as the gradient averaging error indicator, but has an important advantage because it is valid for a much wider set of approximate solutions.


YSO-asiasanatmatemaattiset mallitsimulointiosittaisdifferentiaaliyhtälötapproksimointivirheanalyysikoneoppiminen

Vapaat asiasanatmesh adaptive methods; machine learning; network error indicator


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2022

JUFO-taso2


Viimeisin päivitys 2024-12-10 klo 12:00