A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Virtual Resource Allocation for Wireless Virtualized Heterogeneous Network with Hybrid Energy Supply (2022)
Chang, Z., & Chen, T. (2022). Virtual Resource Allocation for Wireless Virtualized Heterogeneous Network with Hybrid Energy Supply. IEEE Transactions on Wireless Communications, 21(3), 1886-1896. https://doi.org/10.1109/twc.2021.3107867
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Chang, Zheng; Chen, Tao
Lehti tai sarja: IEEE Transactions on Wireless Communications
ISSN: 1536-1276
eISSN: 1558-2248
Julkaisuvuosi: 2022
Volyymi: 21
Lehden numero: 3
Artikkelin sivunumerot: 1886-1896
Kustantaja: Institute of Electrical and Electronics Engineers (IEEE)
Julkaisumaa: Yhdysvallat (USA)
Julkaisun kieli: englanti
DOI: https://doi.org/10.1109/twc.2021.3107867
Julkaisun avoin saatavuus: Ei avoin
Julkaisukanavan avoin saatavuus: Julkaisukanava ei ole avoin
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/85532
Tiivistelmä
In this work, two novel virtual user association and resource allocation algorithms are introduced for a wireless virtualized heterogeneous network with hybrid energy supply. In the considered system, macro base stations (MBSs) are supplied by the grid power and small base stations (SBSs) have the energy harvesting capability in addition to the grid power supplement. Multiple infrastructure providers (InPs) own the physical resources, i.e., BSs and radio resources. The Mobile Virtual Network Operators (MVNOs) are able to recent these resources from the InPs and operate the virtualized resources for providing services to different users. In particular, aiming to maximize the overall utility for the MVNOs, a joint resource (spectrum and power) allocation and user association problem is presented. First, we present an alternating direction method of multipliers (ADMM)-based algorithm solution to find the near-optimal solution in a static manner. Moreover, we also utilize deep reinforcement learning to design the optimal policy without knowing a priori knowledge of the dynamic nature of networks. We have conducted extensive simulation and the performance evaluation demonstrate the advantages and effectiveness of the proposed schemes.
YSO-asiasanat: langattomat verkot; virtualisointi; energian kerääminen; resursointi; koneoppiminen; syväoppiminen
Vapaat asiasanat: energy harvesting; ADMM; reinforcement learning; deep learning; wireless network virtualization; resource allocation
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2022
JUFO-taso: 3