A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Virtual Resource Allocation for Wireless Virtualized Heterogeneous Network with Hybrid Energy Supply (2022)


Chang, Z., & Chen, T. (2022). Virtual Resource Allocation for Wireless Virtualized Heterogeneous Network with Hybrid Energy Supply. IEEE Transactions on Wireless Communications, 21(3), 1886-1896. https://doi.org/10.1109/twc.2021.3107867


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatChang, Zheng; Chen, Tao

Lehti tai sarjaIEEE Transactions on Wireless Communications

ISSN1536-1276

eISSN1558-2248

Julkaisuvuosi2022

Volyymi21

Lehden numero3

Artikkelin sivunumerot1886-1896

KustantajaInstitute of Electrical and Electronics Engineers (IEEE)

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1109/twc.2021.3107867

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuusJulkaisukanava ei ole avoin

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/85532


Tiivistelmä

In this work, two novel virtual user association and resource allocation algorithms are introduced for a wireless virtualized heterogeneous network with hybrid energy supply. In the considered system, macro base stations (MBSs) are supplied by the grid power and small base stations (SBSs) have the energy harvesting capability in addition to the grid power supplement. Multiple infrastructure providers (InPs) own the physical resources, i.e., BSs and radio resources. The Mobile Virtual Network Operators (MVNOs) are able to recent these resources from the InPs and operate the virtualized resources for providing services to different users. In particular, aiming to maximize the overall utility for the MVNOs, a joint resource (spectrum and power) allocation and user association problem is presented. First, we present an alternating direction method of multipliers (ADMM)-based algorithm solution to find the near-optimal solution in a static manner. Moreover, we also utilize deep reinforcement learning to design the optimal policy without knowing a priori knowledge of the dynamic nature of networks. We have conducted extensive simulation and the performance evaluation demonstrate the advantages and effectiveness of the proposed schemes.


YSO-asiasanatlangattomat verkotvirtualisointienergian kerääminenresursointikoneoppiminensyväoppiminen

Vapaat asiasanatenergy harvesting; ADMM; reinforcement learning; deep learning; wireless network virtualization; resource allocation


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2022

JUFO-taso3


Viimeisin päivitys 2024-12-10 klo 12:30