A1 Journal article (refereed)
The Association Between Epigenetic Clocks and Physical Functioning in Older Women : A 3-Year Follow-up (2022)

Föhr, T., Törmäkangas, T., Lankila, H., Viljanen, A., Rantanen, T., Ollikainen, M., Kaprio, J., & Sillanpää, E. (2022). The Association Between Epigenetic Clocks and Physical Functioning in Older Women : A 3-Year Follow-up. Journals of Gerontology Series A : Biological Sciences and Medical Sciences, 77(8), 1569-1576. https://doi.org/10.1093/gerona/glab270

JYU authors or editors

Publication details

All authors or editorsFöhr, Tiina; Törmäkangas, Timo; Lankila, Hannamari; Viljanen, Anne; Rantanen, Taina; Ollikainen, Miina; Kaprio, Jaakko; Sillanpää, Elina

Journal or seriesJournals of Gerontology Series A : Biological Sciences and Medical Sciences



Publication year2022

Publication date20/09/2021


Issue number8

Pages range1569-1576

PublisherOxford University Press

Publication countryUnited Kingdom

Publication languageEnglish


Publication open accessOpenly available

Publication channel open accessPartially open access channel

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/82771


Epigenetic clocks are composite markers developed to predict chronological age or mortality risk from DNA methylation (DNAm) data. The present study investigated the associations between four epigenetic clocks (Horvath’s and Hannum’s DNAmAge and DNAm GrimAge and PhenoAge) and physical functioning during a three-year follow-up.

We studied 63–76-year-old women (n = 413) from the Finnish Twin Study on Aging. DNAm was measured from blood samples at baseline. Age acceleration (AgeAccel) i.e. discrepancy between chronological age and DNAm age was determined as residuals from linear model. Physical functioning was assessed under standardized laboratory conditions at baseline and at follow-up. A cross-sectional analysis was performed with path models, and a longitudinal analysis was conducted with repeated measures linear models. A nonrandom missing data analysis was performed.

In comparison to the other clocks, GrimAgeAccel was more strongly associated with physical functioning. At baseline, GrimAgeAccel was associated with lower performance in the Timed Up and Go (TUG) test and the six-minute walk test. At follow-up, significant associations were observed between GrimAgeAccel and lowered performance in the TUG, six-minute and 10-meter walk tests, and knee extension and ankle plantar flexion strength tests.

The DNAm GrimAge, a novel estimate of biological aging, associated with decline in physical functioning over the three-year follow-up in older women. However, associations between chronological age and physical function phenotypes followed similar pattern. Current epigenetic clocks do not provide strong benefits in predicting the decline of physical functioning at least during a rather short follow-up period and restricted age-range.

KeywordsageingepigeneticsDNA methylationphysical functioning

Free keywordsepigenetic clock; biological aging

Contributing organizations

Ministry reportingYes

Reporting Year2022

JUFO rating3

Last updated on 2024-03-04 at 17:36