A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Study of irregular dynamics in an economic model : attractor localization and Lyapunov exponents (2021)


Alexeeva, T. A., Kuznetsov, N. V., & Mokaev, T. N. (2021). Study of irregular dynamics in an economic model : attractor localization and Lyapunov exponents. Chaos, Solitons and Fractals, 152, Article 111365. https://doi.org/10.1016/j.chaos.2021.111365


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatAlexeeva, Tatyana A.; Kuznetsov, Nikolay V.; Mokaev, Timur N.

Lehti tai sarjaChaos, Solitons and Fractals

ISSN0960-0779

eISSN1873-2887

Julkaisuvuosi2021

Volyymi152

Artikkelinumero111365

KustantajaElsevier

JulkaisumaaBritannia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1016/j.chaos.2021.111365

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/77952

Rinnakkaistallenteen verkko-osoite (pre-print)https://arxiv.org/abs/2107.13907


Tiivistelmä

Cyclicality and instability inherent in the economy can manifest themselves in irregular fluctuations, including chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the economic system in the long run. We focus on an approach, associated with the identification of a deterministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model as an example, we demonstrate the use of effective analytical and numerical procedures for calculating the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as dimension and entropy. We use an analytical approach for localization of a global attractor and study limiting dynamics of the model. We estimate the Lyapunov exponents and get the exact formula for the Lyapunov dimension of the global attractor of this model analytically. With the help of delayed feedback control (DFC), the possibility of transition from irregular limiting dynamics to regular periodic dynamics is shown to solve the problem of reliable forecasting. At the same time, we demonstrate the complexity and ambiguity of applying numerical procedures to calculate the Lyapunov dimension along different trajectories of the global attractor, including unstable periodic orbits (UPOs).


YSO-asiasanattaloudelliset mallittaloudelliset ennusteetkausivaihtelutdynaamiset systeemitattraktoritkaaosteoria

Vapaat asiasanatLyapunov exponents; Lyapunov dimension; Unstable periodic orbit; Absorbing set; Mid-size firm model


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2021

JUFO-taso1


Viimeisin päivitys 2024-12-10 klo 10:45