A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Causal Effect Identification from Multiple Incomplete Data Sources : A General Search-Based Approach (2021)


Tikka, S., Hyttinen, A., & Karvanen, J. (2021). Causal Effect Identification from Multiple Incomplete Data Sources : A General Search-Based Approach. Journal of Statistical Software, 99, Article 5. https://doi.org/10.18637/jss.v099.i05


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatTikka, Santtu; Hyttinen, Antti; Karvanen, Juha

Lehti tai sarjaJournal of Statistical Software

eISSN1548-7660

Julkaisuvuosi2021

Volyymi99

Artikkelinumero5

KustantajaFoundation for Open Access Statistic

JulkaisumaaItävalta

Julkaisun kielienglanti

DOIhttps://doi.org/10.18637/jss.v099.i05

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusKokonaan avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/78024

Julkaisu on rinnakkaistallennettuhttps://arxiv.org/abs/1902.01073


Tiivistelmä

Causal effect identification considers whether an interventional probability distribution can be uniquely determined without parametric assumptions from measured source distributions and structural knowledge on the generating system. While complete graphical criteria and procedures exist for many identification problems, there are still challenging but important extensions that have not been considered in the literature such as combined transportability and selection bias, or multiple sources of selection bias. To tackle these new settings, we present a search algorithm directly over the rules of do-calculus. Due to the generality of do-calculus, the search is capable of taking more advanced datagenerating mechanisms into account along with an arbitrary type of both observational and experimental source distributions. The search is enhanced via a heuristic and search space reduction techniques. The approach, called do-search, is provably sound, and it is complete with respect to identifiability problems that have been shown to be completely characterized by do-calculus. When extended with additional rules, the search is capable of handling missing data problems as well. With the versatile search, we are able to approach new problems for which no other algorithmic solutions exist. We perform a systematic analysis of bivariate missing data problems and study causal inference under case-control design. We also present the R package dosearch that provides an interface for a C++ implementation of the search.


YSO-asiasanatkausaliteettipäättelyhakualgoritmitR-kielimeta-analyysi

Vapaat asiasanatcausality; do-calculus; selection bias; transportability; missing data; case-control design; meta-analysis


Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

VIRTA-lähetysvuosi2021

JUFO-taso1


Viimeisin päivitys 2024-12-10 klo 11:00