A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Causal Effect Identification from Multiple Incomplete Data Sources : A General Search-Based Approach (2021)
Tikka, S., Hyttinen, A., & Karvanen, J. (2021). Causal Effect Identification from Multiple Incomplete Data Sources : A General Search-Based Approach. Journal of Statistical Software, 99, Article 5. https://doi.org/10.18637/jss.v099.i05
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Tikka, Santtu; Hyttinen, Antti; Karvanen, Juha
Lehti tai sarja: Journal of Statistical Software
eISSN: 1548-7660
Julkaisuvuosi: 2021
Volyymi: 99
Artikkelinumero: 5
Kustantaja: Foundation for Open Access Statistic
Julkaisumaa: Itävalta
Julkaisun kieli: englanti
DOI: https://doi.org/10.18637/jss.v099.i05
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Kokonaan avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/78024
Julkaisu on rinnakkaistallennettu: https://arxiv.org/abs/1902.01073
Tiivistelmä
Causal effect identification considers whether an interventional probability distribution can be uniquely determined without parametric assumptions from measured source distributions and structural knowledge on the generating system. While complete graphical criteria and procedures exist for many identification problems, there are still challenging but important extensions that have not been considered in the literature such as combined transportability and selection bias, or multiple sources of selection bias. To tackle these new settings, we present a search algorithm directly over the rules of do-calculus. Due to the generality of do-calculus, the search is capable of taking more advanced datagenerating mechanisms into account along with an arbitrary type of both observational and experimental source distributions. The search is enhanced via a heuristic and search space reduction techniques. The approach, called do-search, is provably sound, and it is complete with respect to identifiability problems that have been shown to be completely characterized by do-calculus. When extended with additional rules, the search is capable of handling missing data problems as well. With the versatile search, we are able to approach new problems for which no other algorithmic solutions exist. We perform a systematic analysis of bivariate missing data problems and study causal inference under case-control design. We also present the R package dosearch that provides an interface for a C++ implementation of the search.
YSO-asiasanat: kausaliteetti; päättely; hakualgoritmit; R-kieli; meta-analyysi
Vapaat asiasanat: causality; do-calculus; selection bias; transportability; missing data; case-control design; meta-analysis
Liittyvät organisaatiot
Hankkeet, joissa julkaisu on tehty
- Yliopistojen profiloitumisen vahvistaminen kilpaillulla rahoituksella. Profilointitoimet JYU:ssä, 3. kierros
- Hämäläinen, Keijo
- Suomen Akatemia
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2021
JUFO-taso: 1