A1 Journal article (refereed)
Abstract and concrete tangent modules on Lipschitz differentiability spaces (2022)
Ikonen, T., Pasqualetto, E., & Soultanis, E. (2022). Abstract and concrete tangent modules on Lipschitz differentiability spaces. Proceedings of the American Mathematical Society, 150(1), 327-343. https://doi.org/10.1090/proc/15656
JYU authors or editors
Publication details
All authors or editors: Ikonen, Toni; Pasqualetto, Enrico; Soultanis, Elefterios
Journal or series: Proceedings of the American Mathematical Society
ISSN: 0002-9939
eISSN: 1088-6826
Publication year: 2022
Publication date: 19/10/2021
Volume: 150
Issue number: 1
Pages range: 327-343
Publisher: American Mathematical Society (AMS)
Publication country: United States
Publication language: English
DOI: https://doi.org/10.1090/proc/15656
Publication open access: Not open
Publication channel open access:
Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/78616
Publication is parallel published: https://arxiv.org/abs/2011.15092
Abstract
We also provide a direct proof of a result by Gigli and Pasqualetto, Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces, arXiv:1611.09645 that, for a space with a strongly rectifiable decomposition, Gigli’s tangent module admits an isometric embedding into the so-called Gromov–Hausdorff tangent module, without any a priori reflexivity assumptions.
Keywords: mathematics; metric spaces; equivalence
Contributing organizations
Related projects
- Quasiconformal Analysis and Parametrizations of metric spaces
- Rajala, Kai
- Research Council of Finland
- Geometric Aspects of Sobolev Space Theory
- Rajala, Tapio
- Research Council of Finland
- Uniformization of metric surfaces
- Ikonen, Toni
- Väisälä Foundation
- Uniformization of metric surfaces
- Ikonen, Toni
- Väisälä Foundation
Ministry reporting: Yes
VIRTA submission year: 2022
JUFO rating: 2