A4 Artikkeli konferenssijulkaisussa
LightSleepNet : A Lightweight Deep Model for Rapid Sleep Stage Classification with Spectrograms (2021)


Zhou, D., Xu, Q., Wang, J., Zhang, J., Hu, G., Kettunen, L., Chang, Z., & Cong, F. (2021). LightSleepNet : A Lightweight Deep Model for Rapid Sleep Stage Classification with Spectrograms. In EMBC 2021 : 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 43-46). IEEE. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. https://doi.org/10.1109/embc46164.2021.9629878


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatZhou, Dongdong; Xu, Qi; Wang, Jian; Zhang, Jiacheng; Hu, Guoqiang; Kettunen, Lauri; Chang, Zheng; Cong, Fengyu

EmojulkaisuEMBC 2021 : 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Konferenssin paikka ja aikaMexico1.-5.11.2021

ISBN978-1-7281-1180-3

eISBN978-1-7281-1179-7

Lehti tai sarjaAnnual International Conference of the IEEE Engineering in Medicine and Biology Society

ISSN2375-7477

eISSN1557-170X

Julkaisuvuosi2021

Ilmestymispäivä01.11.2021

Artikkelin sivunumerot43-46

KustantajaIEEE

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1109/embc46164.2021.9629878

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/85535


Tiivistelmä

Deep learning has achieved unprecedented success in sleep stage classification tasks, which starts to pave the way for potential real-world applications. However, due to its enormous size, deployment of deep neural networks is hindered by high cost at various aspects, such as computation power, storage, network bandwidth, power consumption, and hardware complexity. For further practical applications (e.g., wearable sleep monitoring devices), there is a need for simple and compact models. In this paper, we propose a lightweight model, namely LightSleepNet, for rapid sleep stage classification based on spectrograms. Our model is assembled by a much fewer number of model parameters compared to existing ones. Furthermore, we convert the raw EEG data into spectrograms to speed up the training process. We evaluate the model performance on several public sleep datasets with different characteristics. Experimental results show that our lightweight model using spectrogram as input can achieve comparable overall accuracy and Cohen’s kappa (SHHS100: 86.7%-81.3%, Sleep-EDF: 83.7%-77.5%, Sleep-EDF-v1: 88.3%-84.5%) compared to the state-of-the-art methods on experimental datasets.


YSO-asiasanatunitutkimusmallintaminenEEGsignaalinkäsittelysyväoppiminenneuroverkot

Vapaat asiasanatdeep learning; training; power demand; sleep; computational modeling; biological system modeling; brain modeling


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2021

JUFO-taso1


Viimeisin päivitys 2024-12-10 klo 11:16