A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
On several notions of complexity of polynomial progressions (2023)
Kuca, B. (2023). On several notions of complexity of polynomial progressions. Ergodic Theory and Dynamical Systems, 43(4), 1269-1323. https://doi.org/10.1017/etds.2021.171
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Kuca, Borys
Lehti tai sarja: Ergodic Theory and Dynamical Systems
ISSN: 0143-3857
eISSN: 1469-4417
Julkaisuvuosi: 2023
Ilmestymispäivä: 20.01.2022
Volyymi: 43
Lehden numero: 4
Artikkelin sivunumerot: 1269-1323
Kustantaja: Cambridge University Press
Julkaisumaa: Britannia
Julkaisun kieli: englanti
DOI: https://doi.org/10.1017/etds.2021.171
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Osittain avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/80060
Julkaisu on rinnakkaistallennettu: https://arxiv.org/abs/2104.07339
Tiivistelmä
For a polynomial progression (x, x + P1(y), . . . , x + Pt(y)), we define four notions of complexity: Host Kra complexity, Weyl complexity, true complexity and algebraic complexity. The first two describe the smallest characteristic factor of the progression, the third refers to the smallest-degree Gowers norm controlling the progression, and the fourth concerns algebraic relations between terms of the progressions. We conjecture that these four notions are equivalent, which would give a purely algebraic criterion for determining the smallest Host Kra factor or the smallest Gowers norm controlling a given progression. We prove this conjecture for all progressions whose terms only satisfy homogeneous algebraic relations and linear combinations thereof. This family of polynomial progressions includes, but is not limited to, arithmetic progressions, progressions with linearly independent polynomials P1, . . . ,Pt and progressions whose terms satisfy no quadratic relations. For progressions that satisfy only linear relations, such as (x, x + y2, x + 2y2, x + y3, x + 2y3), we derive several combinatorial and dynamical corollaries: first, an estimate for the count of such progressions in subsets of Z/NZ or totally ergodic dynamical systems; second, a lower bound for multiple recurrence; and third, a popular common difference result in Z/NZ. Lastly, we show that Weyl complexity and algebraic complexity always agree, which gives a straightforward algebraic description of Weyl complexity.
YSO-asiasanat: lukuteoria; kombinatoriikka; lukujonot; polynomit; dynaamiset systeemit
Vapaat asiasanat: Gowers norms; Host-Kra factors; multiple recurrence; polynomial progressions
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2022
JUFO-taso: 2