A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
On several notions of complexity of polynomial progressions (2023)


Kuca, B. (2023). On several notions of complexity of polynomial progressions. Ergodic Theory and Dynamical Systems, 43(4), 1269-1323. https://doi.org/10.1017/etds.2021.171


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatKuca, Borys

Lehti tai sarjaErgodic Theory and Dynamical Systems

ISSN0143-3857

eISSN1469-4417

Julkaisuvuosi2023

Ilmestymispäivä20.01.2022

Volyymi43

Lehden numero4

Artikkelin sivunumerot1269-1323

KustantajaCambridge University Press

JulkaisumaaBritannia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1017/etds.2021.171

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/80060

Julkaisu on rinnakkaistallennettuhttps://arxiv.org/abs/2104.07339


Tiivistelmä

For a polynomial progression (x, x + P1(y), . . . , x + Pt(y)), we define four notions of complexity: Host Kra complexity, Weyl complexity, true complexity and algebraic complexity. The first two describe the smallest characteristic factor of the progression, the third refers to the smallest-degree Gowers norm controlling the progression, and the fourth concerns algebraic relations between terms of the progressions. We conjecture that these four notions are equivalent, which would give a purely algebraic criterion for determining the smallest Host Kra factor or the smallest Gowers norm controlling a given progression. We prove this conjecture for all progressions whose terms only satisfy homogeneous algebraic relations and linear combinations thereof. This family of polynomial progressions includes, but is not limited to, arithmetic progressions, progressions with linearly independent polynomials P1, . . . ,Pt and progressions whose terms satisfy no quadratic relations. For progressions that satisfy only linear relations, such as (x, x + y2, x + 2y2, x + y3, x + 2y3), we derive several combinatorial and dynamical corollaries: first, an estimate for the count of such progressions in subsets of Z/NZ or totally ergodic dynamical systems; second, a lower bound for multiple recurrence; and third, a popular common difference result in Z/NZ. Lastly, we show that Weyl complexity and algebraic complexity always agree, which gives a straightforward algebraic description of Weyl complexity.


YSO-asiasanatlukuteoriakombinatoriikkalukujonotpolynomitdynaamiset systeemit

Vapaat asiasanatGowers norms; Host-Kra factors; multiple recurrence; polynomial progressions


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2022

JUFO-taso2


Viimeisin päivitys 2024-12-10 klo 16:00