A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity : A First-Principles Study (2022)


Kuisma, M., Rousseaux, B., Czajkowski, K. M., Rossi, T. P., Shegai, T., Erhart, P., & Antosiewicz, T. J. (2022). Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity : A First-Principles Study. ACS Photonics, 9(3), 1065-1077. https://doi.org/10.1021/acsphotonics.2c00066


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatKuisma, Mikael; Rousseaux, Benjamin; Czajkowski, Krzysztof M.; Rossi, Tuomas P.; Shegai, Timur; Erhart, Paul; Antosiewicz, Tomasz J.

Lehti tai sarjaACS Photonics

ISSN2330-4022

eISSN2330-4022

Julkaisuvuosi2022

Ilmestymispäivä02.03.2022

Volyymi9

Lehden numero3

Artikkelin sivunumerot1065-1077

KustantajaAmerican Chemical Society (ACS)

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1021/acsphotonics.2c00066

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/80178


Tiivistelmä

Ultrastrong coupling (USC) is a distinct regime of light-matter interaction in which the coupling strength is comparable to the resonance energy of the cavity or emitter. In the USC regime, common approximations to quantum optical Hamiltonians, such as the rotating wave approximation, break down as the ground state of the coupled system gains photonic character due to admixing of vacuum states with higher excited states, leading to ground-state energy changes. USC is usually achieved by collective coherent coupling of many quantum emitters to a single mode cavity, whereas USC with a single molecule remains challenging. Here, we show by time-dependent density functional theory (TDDFT) calculations that a single organic molecule can reach USC with a plasmonic dimer, consisting of a few hundred atoms. In this context, we discuss the capacity of TDDFT to represent strong coupling and its connection to the quantum optical Hamiltonian. We find that USC leads to appreciable ground-state energy modifications accounting for a non-negligible part of the total interaction energy, comparable to kBT at room temperature.


YSO-asiasanatnanorakenteetplasmoniikkafotoniikkatiheysfunktionaaliteoria

Vapaat asiasanatstrong coupling; time-dependent density functional theory; plasmonics; nanophotonics; excitons


Liittyvät organisaatiot

JYU-yksiköt:


OKM-raportointiKyllä

Raportointivuosi2022

JUFO-taso2


Viimeisin päivitys 2024-22-04 klo 22:40