A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD : Anomalous Temperature Distributions from Commonly Used Thermostats (2022)


Korpelin, V., Kiljunen, T., Melander, M. M., Caro, M. A., Kristoffersen, H. H., Mammen, N., Apaja, V., & Honkala, K. (2022). Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD : Anomalous Temperature Distributions from Commonly Used Thermostats. Journal of Physical Chemistry Letters, 13(11), 2644-2652. https://doi.org/10.1021/acs.jpclett.2c00230


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatKorpelin, Ville; Kiljunen, Toni; Melander, Marko M.; Caro, Miguel A.; Kristoffersen, Henrik H.; Mammen, Nisha; Apaja, Vesa; Honkala, Karoliina

Lehti tai sarjaJournal of Physical Chemistry Letters

ISSN1948-7185

eISSN1948-7185

Julkaisuvuosi2022

Ilmestymispäivä17.03.2022

Volyymi13

Lehden numero11

Artikkelin sivunumerot2644-2652

KustantajaAmerican Chemical Society (ACS)

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1021/acs.jpclett.2c00230

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/80252


Tiivistelmä

Density functional theory-based molecular dynamics (DFT-MD) has been widely used for studying the chemistry of heterogeneous interfacial systems under operational conditions. We report frequently overlooked errors in thermostated or constant-temperature DFT-MD simulations applied to study (electro)catalytic chemistry. Our results demonstrate that commonly used thermostats such as Nosé–Hoover, Berendsen, and simple velocity-rescaling methods fail to provide a reliable temperature description for systems considered. Instead, nonconstant temperatures and large temperature gradients within the different parts of the system are observed. The errors are not a “feature” of any particular code but are present in several ab initio molecular dynamics implementations. This uneven temperature distribution, due to inadequate thermostatting, is well-known in the classical MD community, where it is ascribed to the failure in kinetic energy equipartition among different degrees of freedom in heterogeneous systems (Harvey et al. J. Comput. Chem. 1998, 726−740) and termed the flying ice cube effect. We provide tantamount evidence that interfacial systems are susceptible to substantial flying ice cube effects and demonstrate that the traditional Nosé–Hoover and Berendsen thermostats should be applied with care when simulating, for example, catalytic properties or structures of solvated interfaces and supported clusters. We conclude that the flying ice cube effect in these systems can be conveniently avoided using Langevin dynamics.


YSO-asiasanatkemialämmönsäätimettiheysfunktionaaliteoriamolekyylidynamiikka


Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

Raportointivuosi2022

JUFO-taso3


Viimeisin päivitys 2024-22-04 klo 16:30