B3 Vertaisarvioimaton artikkeli konferenssijulkaisussa
How can learning experiences be explored in simulation-based learning situations? (2022)
Karjalainen, S., Silvennoinen, M., Manu, M., Malinen, A., Parviainen, T., & Vesisenaho, M. (2022). How can learning experiences be explored in simulation-based learning situations?. In EAPRIL 2021 Conference Proceedings (pp. 231-243). European Association for Practitioner Research. EAPRIL Conference Proceedings. https://eapril.org/assets/images/proceedings_2021.pdf
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Karjalainen, Suvi; Silvennoinen, Minna; Manu, Mari; Malinen, Anita; Parviainen, Tiina; Vesisenaho, Mikko
Emojulkaisu: EAPRIL 2021 Conference Proceedings
Konferenssin paikka ja aika: Online, 24.-26.11.2021
Lehti tai sarja: EAPRIL Conference Proceedings
eISSN: 2406-4653
Julkaisuvuosi: 2022
Lehden numero: 7
Artikkelin sivunumerot: 231-243
Kustantaja: European Association for Practitioner Research
Julkaisumaa: Belgia
Julkaisun kieli: englanti
Pysyvä verkko-osoite: https://eapril.org/assets/images/proceedings_2021.pdf
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Kokonaan avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/86271
Tiivistelmä
The aim of our research is to investigate what methods can be used to explore learning experiences. In this case example, we describe how we extracted quantitative and qualitative data reflecting learning experiences from simulation-based learning (SBL) situations. Data collection was conducted in the fields of aviation and forestry. After the SBL situation, the students participated in a stimulated recall interview. The transcribed interview data were analysed using data-driven methods. To capture the dynamics in the (neuro)physiological signals associated with varying states of learning experiences, we recorded activity of the autonomic and central nervous systems. When analysing (neuro)physiological data, we focused on extracting reliable signatures reflecting both the state and the reactivity of the autonomic and central nervous systems. Later on, different data types will be integrated and analysed together. The aim of this article is to elaborate the extent to which different data types can be integrated in analysis to produce meaningful information about learning experiences. Our results based on the students’ interviews highlight the meaningfulness of the instructor’s guidance in SBL situations. We also show that it is possible to extract reliable features from (neuro)physiological signals measured during natural learning situations. These (neuro)physiological features also seem to vary depending on the phase of the simulation. Therefore, we conclude that by including (neuro)physiological measurements in research designs, it is possible to achieve a more comprehensive understanding of learning experiences. This type of multidisciplinary research is likely to provide novel insights in developing learning environments and guidance.
YSO-asiasanat: oppiminen; oppimiskokemukset; oppimisympäristö; oppimistyylit; tietotyypit; mittaus; mittausmenetelmät; tutkimus; tutkimusmenetelmät; simulointi; neurofysiologia
Liittyvät organisaatiot
Hankkeet, joissa julkaisu on tehty
- Koulutuspalveluiden ekosysteemin kehittäminen fysiologisen mittaustiedon ja älykkäiden järjestelmien avulla
- Vesisenaho, Mikko
- Pirkanmaan liitto
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2022