B3 Vertaisarvioimaton artikkeli konferenssijulkaisussa
How can learning experiences be explored in simulation-based learning situations? (2022)


Karjalainen, S., Silvennoinen, M., Manu, M., Malinen, A., Parviainen, T., & Vesisenaho, M. (2022). How can learning experiences be explored in simulation-based learning situations?. In EAPRIL 2021 Conference Proceedings (pp. 231-243). European Association for Practitioner Research. EAPRIL Conference Proceedings. https://eapril.org/assets/images/proceedings_2021.pdf


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatKarjalainen, Suvi; Silvennoinen, Minna; Manu, Mari; Malinen, Anita; Parviainen, Tiina; Vesisenaho, Mikko

EmojulkaisuEAPRIL 2021 Conference Proceedings

Konferenssin paikka ja aikaOnline24.-26.11.2021

Lehti tai sarjaEAPRIL Conference Proceedings

eISSN2406-4653

Julkaisuvuosi2022

Lehden numero7

Artikkelin sivunumerot231-243

KustantajaEuropean Association for Practitioner Research

JulkaisumaaBelgia

Julkaisun kielienglanti

Pysyvä verkko-osoitehttps://eapril.org/assets/images/proceedings_2021.pdf

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusKokonaan avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/86271


Tiivistelmä

The aim of our research is to investigate what methods can be used to explore learning experiences. In this case example, we describe how we extracted quantitative and qualitative data reflecting learning experiences from simulation-based learning (SBL) situations. Data collection was conducted in the fields of aviation and forestry. After the SBL situation, the students participated in a stimulated recall interview. The transcribed interview data were analysed using data-driven methods. To capture the dynamics in the (neuro)physiological signals associated with varying states of learning experiences, we recorded activity of the autonomic and central nervous systems. When analysing (neuro)physiological data, we focused on extracting reliable signatures reflecting both the state and the reactivity of the autonomic and central nervous systems. Later on, different data types will be integrated and analysed together. The aim of this article is to elaborate the extent to which different data types can be integrated in analysis to produce meaningful information about learning experiences. Our results based on the students’ interviews highlight the meaningfulness of the instructor’s guidance in SBL situations. We also show that it is possible to extract reliable features from (neuro)physiological signals measured during natural learning situations. These (neuro)physiological features also seem to vary depending on the phase of the simulation. Therefore, we conclude that by including (neuro)physiological measurements in research designs, it is possible to achieve a more comprehensive understanding of learning experiences. This type of multidisciplinary research is likely to provide novel insights in developing learning environments and guidance.


YSO-asiasanatoppiminenoppimiskokemuksetoppimisympäristöoppimistyylittietotyypitmittausmittausmenetelmättutkimustutkimusmenetelmätsimulointineurofysiologia


Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

VIRTA-lähetysvuosi2022


Viimeisin päivitys 2024-15-06 klo 23:26