A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Phase-dependent microwave response of a graphene Josephson junction (2022)


Haller, R., Fülöp, G., Indolese, D., Ridderbos, J., Kraft, R., Cheung, L. Y., Ungerer, J. H., Watanabe, K., Taniguchi, T., Beckmann, D., Danneau, R., Virtanen, P., & Schönenberger, C. (2022). Phase-dependent microwave response of a graphene Josephson junction. Physical Review Research, 4(1), Article 013198. https://doi.org/10.1103/PhysRevResearch.4.013198


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatHaller, R.; Fülöp, G.; Indolese, D.; Ridderbos, J.; Kraft, R.; Cheung, L. Y.; Ungerer, J. H.; Watanabe, K.; Taniguchi, T.; Beckmann, D.; et al.

Lehti tai sarjaPhysical Review Research

eISSN2643-1564

Julkaisuvuosi2022

Ilmestymispäivä14.03.2022

Volyymi4

Lehden numero1

Artikkelinumero013198

KustantajaAmerican Physical Society (APS)

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1103/PhysRevResearch.4.013198

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusKokonaan avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/81929

Rinnakkaistallenteen verkko-osoite (pre-print)https://arxiv.org/abs/2108.00989


Tiivistelmä

Gate-tunable Josephson junctions embedded in a microwave environment provide a promising platform to in situ engineer and optimize novel superconducting quantum circuits. The key quantity for the circuit design is the phase-dependent complex admittance of the junction, which can be probed by sensing a radio frequency SQUID with a tank circuit. Here, we investigate a graphene-based Josephson junction as a prototype gate-tunable element enclosed in a SQUID loop that is inductively coupled to a superconducting resonator operating at 3 GHz. With a concise circuit model that describes the dispersive and dissipative response of the coupled system, we extract the phase-dependent junction admittance corrected for self-screening of the SQUID loop. We decompose the admittance into the current-phase relation and the phase-dependent loss, and as these quantities are dictated by the spectrum and population dynamics of the supercurrent-carrying Andreev bound states, we gain insight to the underlying microscopic transport mechanisms in the junction. We theoretically reproduce the experimental results by considering a short, diffusive junction model that takes into account the interaction between the Andreev spectrum and the electromagnetic environment, from which we estimate lifetimes on the order of ∼10 ps for nonequilibrium populations.


YSO-asiasanatnanoelektroniikkaelektroniset piiritsuprajohteetsuprajohtavuusgrafeenimikroaallot


Liittyvät organisaatiot

JYU-yksiköt:


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

Raportointivuosi2022

JUFO-taso1


Viimeisin päivitys 2024-22-04 klo 20:04