A4 Artikkeli konferenssijulkaisussa
Interactive MOEA/D with multiple types of preference information (2022)


Lárraga, G., & Miettinen, K. (2022). Interactive MOEA/D with multiple types of preference information. In J. E. Fieldsend (Ed.), GECCO '22 : Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 1826-1834). ACM. https://doi.org/10.1145/3520304.3534013


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatLárraga, Giomara; Miettinen, Kaisa

EmojulkaisuGECCO '22 : Proceedings of the Genetic and Evolutionary Computation Conference Companion

Emojulkaisun toimittajatFieldsend, Jonathan E.

Konferenssin paikka ja aikaBoston, Massachusetts, USA9.-13.7.2022

ISBN978-1-4503-9268-6

Julkaisuvuosi2022

Ilmestymispäivä19.07.2022

Artikkelin sivunumerot1826-1834

Kirjan kokonaissivumäärä2345

KustantajaACM

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1145/3520304.3534013

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava


Tiivistelmä

Multiobjective optimization has the ultimate aim of helping a decision-maker to find a satisfying solution for a problem with multiple conflicting objectives. Usually, multiobjective evolutionary algorithms have been utilized to approximate the complete Pareto optimal set. However, some such algorithms incorporate preference information to direct the search toward a region of interest. Interactive methods allow decision-makers to learn more about the problem and update their preference information iteratively. Although preference information can be represented in multiple ways, most multiobjective evolutionary algorithms restrict the decision-maker to a single type of preference information. This article proposes an interactive version of MOEA/D that incorporates three types of preference information: reference points, preferred solutions, and preferred ranges. The reference vectors assigned to the solutions that met the preferences are kept in the population for the next iteration, while the remaining ones are re-arranged. The proposed method is applied to solve a river pollution problem to show its potential to support decision-makers in finding a satisfying solution without limiting them to a single type of preference. This gives more flexibility for the decision-maker to direct the search for the most preferred solution. In addition, we compared our method with interactive RVEA utilizing some benchmark problems.


YSO-asiasanatmonitavoiteoptimointioptimointipäätöksentekopäätöksentukijärjestelmätinteraktiivisuusevoluutiolaskentaalgoritmit

Vapaat asiasanatmultiobjective optimization; interactive decision making; evolutionary algorithms; continuous optimization


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2022

JUFO-taso1


Viimeisin päivitys 2024-12-10 klo 13:46