O1 Abstract
Differentiating Malignant from Benign for Melanocytic and Non-melanocytic Skin Tumors : A Pilot Study on Hyperspectral Imaging and Convolutional Neural Networks (2022)
Lindholm, V., Raita-Hakola, A.-M., Annala, L., Salmivuori, M., Jeskanen, L., Koskenmies, S., Pitkänen, S., Saari, H., Pölönen, I., Isoherranen, K., & Ranki, A. (2022). Differentiating Malignant from Benign for Melanocytic and Non-melanocytic Skin Tumors : A Pilot Study on Hyperspectral Imaging and Convolutional Neural Networks. In Abstracts from 35th Congress of Nordic Dermatology and Venereology (pp. 51). Society for Publication of Acta Dermato-Venereologica. Acta Dermato-Venereologica, Suppl 222. https://medicaljournalssweden.se/actadv/issue/view/159
JYU authors or editors
Publication details
All authors or editors: Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Koskenmies, Sari; Pitkänen, Sari; Saari, Heikki; Pölönen, Ilkka; Isoherranen, Kirsi; et al.
Parent publication: Abstracts from 35th Congress of Nordic Dermatology and Venereology
Place and date of conference: Copenhagen, Denmark, 19.-22.2022
Journal or series: Acta Dermato-Venereologica
ISSN: 0001-5555
eISSN: 1651-2057
Publication year: 2022
Number in series: Suppl 222
Pages range: 51
Number of pages in the book: 56
Publisher: Society for Publication of Acta Dermato-Venereologica
Publication country: Sweden
Publication language: English
Persistent website address: https://medicaljournalssweden.se/actadv/issue/view/159
Publication open access: Openly available
Publication channel open access: Open Access channel
Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/82488
Keywords: skin cancer; melanoma; basal cell carcinoma; carcinomas; diagnostics; hyperspectral imaging; machine learning; neural networks (information technology)
Contributing organizations
Ministry reporting: Won't be reported