A1 Journal article (refereed)
Evolved high aerobic capacity has context-specific effects on gut microbiota (2022)


Hanhimäki, E., Watts, P. C., Koskela, E., Koteja, P., Mappes, T., & Hämäläinen, A. M. (2022). Evolved high aerobic capacity has context-specific effects on gut microbiota. Frontiers in Ecology and Evolution, 10, Article 934164. https://doi.org/10.3389/fevo.2022.934164


JYU authors or editors


Publication details

All authors or editors: Hanhimäki, Elina; Watts, Phillip C.; Koskela, Esa; Koteja, Paweł; Mappes, Tapio; Hämäläinen, Anni M.

Journal or series: Frontiers in Ecology and Evolution

eISSN: 2296-701X

Publication year: 2022

Publication date: 09/08/2022

Volume: 10

Article number: 934164

Publisher: Frontiers Media SA

Publication country: Switzerland

Publication language: English

DOI: https://doi.org/10.3389/fevo.2022.934164

Publication open access: Openly available

Publication channel open access: Open Access channel

Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/82549

Additional information: The raw sequencing data presented in this study has been deposited in the Sequence Read Archive (SRA) at NCBI with the accession number: PRJNA833118- SAMN27960473-SAMN27960504, SAMN27960429-SAMN27960472, SAMN27960523-SAMN27960550, SAMN27960505-SAMN27960522, SAMN27960573-SAMN27960604, SAMN27960551-SAMN27960572, SAMN27960605-SAMN27960674. Metadata is available in the Supplementary material. Any further queries should be directed to the corresponding author.


Abstract

Gut microbiota is expected to coevolve with the host's physiology and may play a role in adjusting the host's energy metabolism to suit the host's environment. To evaluate the effects of both evolved host metabolism and the environmental context in shaping the gut microbiota, we used a unique combination of (1) experimental evolution to create selection lines for a fast metabolism and (2) a laboratory-to-field translocation study. Mature bank voles Myodes glareolus from lines selected for high aerobic capacity (A lines) and from unselected control (C lines) were released into large (0.2 ha) outdoor enclosures for longitudinal monitoring. To examine whether the natural environment elicited a similar or more pronounced impact on the gut microbiota of the next generation, we also sampled the field-reared offspring. The gut microbiota were characterized using 16S rRNA amplicon sequencing of fecal samples. The artificial selection for fast metabolism had minimal impact on the gut microbiota in laboratory conditions but in field conditions, there were differences between the selection lines (A lines vs. C lines) in the diversity, community, and resilience of the gut microbiota. Notably, the selection lines differed in the less abundant bacteria throughout the experiment. The lab-to-field transition resulted in an increase in alpha diversity and an altered community composition in the gut microbiota, characterized by a significant increase in the relative abundance of Actinobacteria and a decrease of Patescibacteria. Also, the selection lines showed different temporal patterns in changes in microbiota composition, as the average gut microbiota alpha diversity of the C lines, but not A lines, was temporarily reduced during the initial transition to the field. In surviving young voles, the alpha diversity of gut microbiota was significantly higher in A-line than C-line voles. These results indicate that the association of host metabolism and gut microbiota is context-specific, likely mediated by behavioral or physiological modifications in response to the environment.


Keywords: intestines; microbes; gastrointestinal microbiota; metabolism; Clethrionomys glareolus; living environment; aerobic capacity; sequencing; evolutionary biology

Free keywords: metabolic rate; gut microbiota; bank vole; 16S rRNA sequencing; field experiment; experimental evolution; selection lines; longitudinal


Contributing organizations


Related projects


Ministry reporting: Yes

Reporting Year: 2022

Preliminary JUFO rating: 1


Last updated on 2023-03-04 at 09:34