A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Towards explainable interactive multiobjective optimization : R-XIMO (2022)


Misitano, G., Afsar, B., Lárraga, G., & Miettinen, K. (2022). Towards explainable interactive multiobjective optimization : R-XIMO. Autonomous Agents and Multi-Agent Systems, 36(2), Article 43. https://doi.org/10.1007/s10458-022-09577-3


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatMisitano, Giovanni; Afsar, Bekir; Lárraga, Giomara; Miettinen, Kaisa

Lehti tai sarjaAutonomous Agents and Multi-Agent Systems

ISSN1387-2532

eISSN1573-7454

Julkaisuvuosi2022

Ilmestymispäivä13.08.2022

Volyymi36

Lehden numero2

Artikkelinumero43

KustantajaSpringer Science and Business Media LLC

JulkaisumaaAlankomaat

Julkaisun kielienglanti

DOIhttps://doi.org/10.1007/s10458-022-09577-3

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/82603


Tiivistelmä

In interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple solutions exist for these problems with various trade-offs, preferences are crucial to identify the best solution(s). However, it is not necessarily clear to the decision maker how the preferences lead to particular solutions and, by introducing explanations to interactive multiobjective optimization methods, we promote a novel paradigm of explainable interactive multiobjective optimization. As a proof of concept, we introduce a new method, R-XIMO, which provides explanations to a decision maker for reference point based interactive methods. We utilize concepts of explainable artificial intelligence and SHAP (Shapley Additive exPlanations) values. R-XIMO allows the decision maker to learn about the trade-offs in the underlying problem and promotes confidence in the solutions found. In particular, R-XIMO supports the decision maker in expressing new preferences that help them improve a desired objective by suggesting another objective to be impaired. This kind of support has been lacking. We validate R-XIMO numerically, with an illustrative example, and with a case study demonstrating how R-XIMO can support a real decision maker. Our results show that R-XIMO successfully generates sound explanations. Thus, incorporating explainability in interactive methods appears to be a very promising and exciting new research area.


YSO-asiasanatoptimointimonitavoiteoptimointiinteraktiivisuustekoälykoneoppiminenpäätöksentekopäätöksentukijärjestelmätjohtaminenmetsänkäsittely

Vapaat asiasanatinteractive methods; multiple criteria optimization; explainable artificial intelligence; decision making; reference point


Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

VIRTA-lähetysvuosi2022

JUFO-taso2


Viimeisin päivitys 2024-12-10 klo 14:00