A1 Journal article (refereed)
The volume of the boundary of a Sobolev (p,q)-extension domain (2022)
Koskela, P., Ukhlov, A., & Zhu, Z. (2022). The volume of the boundary of a Sobolev (p,q)-extension domain. Journal of Functional Analysis, 283(12), Article 109703. https://doi.org/10.1016/j.jfa.2022.109703
JYU authors or editors
Publication details
All authors or editors: Koskela, Pekka; Ukhlov, Alexander; Zhu, Zheng
Journal or series: Journal of Functional Analysis
ISSN: 0022-1236
eISSN: 1096-0783
Publication year: 2022
Publication date: 08/09/2022
Volume: 283
Issue number: 12
Article number: 109703
Publisher: Elsevier
Publication country: United States
Publication language: English
DOI: https://doi.org/10.1016/j.jfa.2022.109703
Publication open access: Not open
Publication channel open access: Channel is not openly available
Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/85308
Web address of parallel published publication (pre-print): https://arxiv.org/abs/2012.07473
Abstract
<\fz$. We prove that if Ω⊂Rn is a Sobolev (p,q)-extension domain, with additional capacitory restrictions on boundary in the case q≤n−1, n>2, then |∂Ω|=0. In the case 1≤q0.
Keywords: functional analysis; partial differential equations
Free keywords: Sobolev extension; boundary volume; capacity estimate; Ahlfors regular
Contributing organizations
Related projects
- Geometric Analysis
- Koskela, Pekka
- Research Council of Finland
Ministry reporting: Yes
VIRTA submission year: 2022
JUFO rating: 2