A1 Journal article (refereed)
The volume of the boundary of a Sobolev (p,q)-extension domain (2022)


Koskela, P., Ukhlov, A., & Zhu, Z. (2022). The volume of the boundary of a Sobolev (p,q)-extension domain. Journal of Functional Analysis, 283(12), Article 109703. https://doi.org/10.1016/j.jfa.2022.109703


JYU authors or editors


Publication details

All authors or editorsKoskela, Pekka; Ukhlov, Alexander; Zhu, Zheng

Journal or seriesJournal of Functional Analysis

ISSN0022-1236

eISSN1096-0783

Publication year2022

Publication date08/09/2022

Volume283

Issue number12

Article number109703

PublisherElsevier

Publication countryUnited States

Publication languageEnglish

DOIhttps://doi.org/10.1016/j.jfa.2022.109703

Publication open accessNot open

Publication channel open accessChannel is not openly available

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/85308

Web address of parallel published publication (pre-print)https://arxiv.org/abs/2012.07473


Abstract

Let n≥2 and $1\leq q

<\fz$. We prove that if Ω⊂Rn is a Sobolev (p,q)-extension domain, with additional capacitory restrictions on boundary in the case q≤n−1, n>2, then |∂Ω|=0. In the case 1≤q0.


Keywordsfunctional analysispartial differential equations

Free keywordsSobolev extension; boundary volume; capacity estimate; Ahlfors regular


Contributing organizations


Related projects


Ministry reportingYes

VIRTA submission year2022

JUFO rating2


Last updated on 2024-12-10 at 14:16