A2 Katsausartikkeli tieteellisessä aikausilehdessä
Tiny Machine Learning for Resource-Constrained Microcontrollers (2022)


Immonen, R., & Hämäläinen, T. (2022). Tiny Machine Learning for Resource-Constrained Microcontrollers. Journal of Sensors, 2022, Article 7437023. https://doi.org/10.1155/2022/7437023


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatImmonen, Riku; Hämäläinen, Timo

Lehti tai sarjaJournal of Sensors

ISSN1687-725X

eISSN1687-7268

Julkaisuvuosi2022

Ilmestymispäivä10.11.2022

Volyymi2022

Artikkelinumero7437023

KustantajaHindawi Limited

JulkaisumaaBritannia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1155/2022/7437023

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusKokonaan avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/83898


Tiivistelmä

We use 250 billion microcontrollers daily in electronic devices that are capable of running machine learning models inside them. Unfortunately, most of these microcontrollers are highly constrained in terms of computational resources, such as memory usage or clock speed. These are exactly the same resources that play a key role in teaching and running a machine learning model with a basic computer. However, in a microcontroller environment, constrained resources make a critical difference. Therefore, a new paradigm known as tiny machine learning had to be created to meet the constrained requirements of the embedded devices. In this review, we discuss the resource optimization challenges of tiny machine learning and different methods, such as quantization, pruning, and clustering, that can be used to overcome these resource difficulties. Furthermore, we summarize the present state of tiny machine learning frameworks, libraries, development environments, and tools. The benchmarking of tiny machine learning devices is another thing to be concerned about; these same constraints of the microcontrollers and diversity of hardware and software turn to benchmark challenges that must be resolved before it is possible to measure performance differences reliably between embedded devices. We also discuss emerging techniques and approaches to boost and expand the tiny machine learning process and improve data privacy and security. In the end, we form a conclusion about tiny machine learning and its future development.


YSO-asiasanatesineiden internetsulautettu tietotekniikkareunalaskentaresurssitkoneoppiminen


Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

VIRTA-lähetysvuosi2022

JUFO-taso1


Viimeisin päivitys 2025-14-03 klo 12:57