A2 Katsausartikkeli tieteellisessä aikausilehdessä
Tiny Machine Learning for Resource-Constrained Microcontrollers (2022)
Immonen, R., & Hämäläinen, T. (2022). Tiny Machine Learning for Resource-Constrained Microcontrollers. Journal of Sensors, 2022, Article 7437023. https://doi.org/10.1155/2022/7437023
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Immonen, Riku; Hämäläinen, Timo
Lehti tai sarja: Journal of Sensors
ISSN: 1687-725X
eISSN: 1687-7268
Julkaisuvuosi: 2022
Ilmestymispäivä: 10.11.2022
Volyymi: 2022
Artikkelinumero: 7437023
Kustantaja: Hindawi Limited
Julkaisumaa: Britannia
Julkaisun kieli: englanti
DOI: https://doi.org/10.1155/2022/7437023
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Kokonaan avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/83898
Tiivistelmä
We use 250 billion microcontrollers daily in electronic devices that are capable of running machine learning models inside them. Unfortunately, most of these microcontrollers are highly constrained in terms of computational resources, such as memory usage or clock speed. These are exactly the same resources that play a key role in teaching and running a machine learning model with a basic computer. However, in a microcontroller environment, constrained resources make a critical difference. Therefore, a new paradigm known as tiny machine learning had to be created to meet the constrained requirements of the embedded devices. In this review, we discuss the resource optimization challenges of tiny machine learning and different methods, such as quantization, pruning, and clustering, that can be used to overcome these resource difficulties. Furthermore, we summarize the present state of tiny machine learning frameworks, libraries, development environments, and tools. The benchmarking of tiny machine learning devices is another thing to be concerned about; these same constraints of the microcontrollers and diversity of hardware and software turn to benchmark challenges that must be resolved before it is possible to measure performance differences reliably between embedded devices. We also discuss emerging techniques and approaches to boost and expand the tiny machine learning process and improve data privacy and security. In the end, we form a conclusion about tiny machine learning and its future development.
YSO-asiasanat: esineiden internet; sulautettu tietotekniikka; reunalaskenta; resurssit; koneoppiminen
Liittyvät organisaatiot
Hankkeet, joissa julkaisu on tehty
- Ekologiset, älykkäät ja turvalliset teollisen internetin palvelut
- Hämäläinen, Timo
- Pirkanmaan liitto
- coADDVA - ADDing VAlue by Computing in Manufacturing
- Hämäläinen, Timo
- Pirkanmaan liitto
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2022
JUFO-taso: 1