A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
BEM-Based Magnetic Field Reconstruction by Ensemble Kálmán Filtering (2023)
Liebsch, M., Russenschuck, S., & Kurz, S. (2023). BEM-Based Magnetic Field Reconstruction by Ensemble Kálmán Filtering. Computational Methods in Applied Mathematics, 23(2), 405-424. https://doi.org/10.1515/cmam-2022-0121
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Liebsch, Melvin; Russenschuck, Stephan; Kurz, Stefan
Lehti tai sarja: Computational Methods in Applied Mathematics
ISSN: 1609-4840
eISSN: 1609-9389
Julkaisuvuosi: 2023
Ilmestymispäivä: 15.12.2022
Volyymi: 23
Lehden numero: 2
Artikkelin sivunumerot: 405-424
Kustantaja: Walter de Gruyter GmbH
Julkaisumaa: Saksa
Julkaisun kieli: englanti
DOI: https://doi.org/10.1515/cmam-2022-0121
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Osittain avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/84639
Tiivistelmä
Magnetic fields generated by normal or superconducting electromagnets are used to guide and focus particle beams in storage rings, synchrotron light sources, mass spectrometers, and beamlines for radiotherapy. The accurate determination of the magnetic field by measurement is critical for the prediction of the particle beam trajectory and hence the design of the accelerator complex. In this context, state-of-the-art numerical field computation makes use of boundary-element methods (BEM) to express the magnetic field. This enables the accurate computation of higher-order partial derivatives and local expansions of magnetic potentials used in efficient numerical codes for particle tracking. In this paper, we present an approach to infer the boundary data of an indirect BEM formulation from magnetic field measurements by ensemble Kálmán filtering. In this way, measurement uncertainties can be propagated to the boundary data, magnetic field and potentials, and to the beam related quantities derived from particle tracking. We provide results obtained from real measurement data of a curved dipole magnet using a Hall probe mapper system.
YSO-asiasanat: bayesilainen menetelmä; magneettikentät; mittauslaitteet; mittaus; fysiikka
Vapaat asiasanat: boundary element methods; particle accelerator magnets; bayesian inference; data assimilation; magnetic measurements
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2022
JUFO-taso: 1