A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
BEM-Based Magnetic Field Reconstruction by Ensemble Kálmán Filtering (2023)


Liebsch, M., Russenschuck, S., & Kurz, S. (2023). BEM-Based Magnetic Field Reconstruction by Ensemble Kálmán Filtering. Computational Methods in Applied Mathematics, 23(2), 405-424. https://doi.org/10.1515/cmam-2022-0121


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatLiebsch, Melvin; Russenschuck, Stephan; Kurz, Stefan

Lehti tai sarjaComputational Methods in Applied Mathematics

ISSN1609-4840

eISSN1609-9389

Julkaisuvuosi2023

Ilmestymispäivä15.12.2022

Volyymi23

Lehden numero2

Artikkelin sivunumerot405-424

KustantajaWalter de Gruyter GmbH

JulkaisumaaSaksa

Julkaisun kielienglanti

DOIhttps://doi.org/10.1515/cmam-2022-0121

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/84639


Tiivistelmä

Magnetic fields generated by normal or superconducting electromagnets are used to guide and focus particle beams in storage rings, synchrotron light sources, mass spectrometers, and beamlines for radiotherapy. The accurate determination of the magnetic field by measurement is critical for the prediction of the particle beam trajectory and hence the design of the accelerator complex. In this context, state-of-the-art numerical field computation makes use of boundary-element methods (BEM) to express the magnetic field. This enables the accurate computation of higher-order partial derivatives and local expansions of magnetic potentials used in efficient numerical codes for particle tracking. In this paper, we present an approach to infer the boundary data of an indirect BEM formulation from magnetic field measurements by ensemble Kálmán filtering. In this way, measurement uncertainties can be propagated to the boundary data, magnetic field and potentials, and to the beam related quantities derived from particle tracking. We provide results obtained from real measurement data of a curved dipole magnet using a Hall probe mapper system.


YSO-asiasanatbayesilainen menetelmämagneettikentätmittauslaitteetmittausfysiikka

Vapaat asiasanatboundary element methods; particle accelerator magnets; bayesian inference; data assimilation; magnetic measurements


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2022

JUFO-taso1


Viimeisin päivitys 2024-12-10 klo 16:00