A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Computer Vision on X-Ray Data in Industrial Production and Security Applications : A Comprehensive Survey (2023)


Rafiei, M., Raitoharju, J., & Iosifidis, A. (2023). Computer Vision on X-Ray Data in Industrial Production and Security Applications : A Comprehensive Survey. IEEE Access, 11, 2445-2477. https://doi.org/10.1109/access.2023.3234187


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatRafiei, Mehdi; Raitoharju, Jenni; Iosifidis, Alexandros

Lehti tai sarjaIEEE Access

eISSN2169-3536

Julkaisuvuosi2023

Volyymi11

Artikkelin sivunumerot2445-2477

KustantajaInstitute of Electrical and Electronics Engineers (IEEE)

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1109/access.2023.3234187

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusKokonaan avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/84993


Tiivistelmä

X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.


YSO-asiasanatkonenäkösyväoppiminenröntgensäteily

Vapaat asiasanatcomputer vision; deep learning; X-ray; industrial applications; security applications


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2023

JUFO-taso1


Viimeisin päivitys 2024-12-10 klo 15:30