A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
UInDeSI4.0 : An efficient Unsupervised Intrusion Detection System for network traffic flow in Industry 4.0 ecosystem (2023)
Shukla, A., Srivastav, S., Kumar, S., & Muhuri, P. (2023). UInDeSI4.0 : An efficient Unsupervised Intrusion Detection System for network traffic flow in Industry 4.0 ecosystem. Engineering Applications of Artificial Intelligence, 120, Article 105848. https://doi.org/10.1016/j.engappai.2023.105848
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Shukla, Amit, K.; Srivastav, Shubham; Kumar, Sandeep; Muhuri, Pranab, K.
Lehti tai sarja: Engineering Applications of Artificial Intelligence
ISSN: 0952-1976
eISSN: 1873-6769
Julkaisuvuosi: 2023
Ilmestymispäivä: 27.01.2023
Volyymi: 120
Artikkelinumero: 105848
Kustantaja: Elsevier BV
Julkaisumaa: Britannia
Julkaisun kieli: englanti
DOI: https://doi.org/10.1016/j.engappai.2023.105848
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Osittain avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/85389
Tiivistelmä
In an Industry 4.0 ecosystem, all the essential components are digitally interconnected, and automation is integrated for higher productivity. However, it invites the risk of increasing cyber-attacks amid the current cyber explosion. The identification and monitoring of these malicious cyber-attacks and intrusions need efficient threat intelligence techniques or intrusion detection systems (IDSs). Reducing the false positive rate in detecting cyber threats is an important step for a safer and reliable environment in any industrial ecosystem. Available approaches for intrusion detection often suffer from high computational costs due to large number of feature instances. Therefore, this paper proposes a novel unsupervised IDS for Industry 4.0 which we term as: Unsupervised Intrusion Detection System for Industry 4.0 (UInDeSI4.0). We have substantiated the proposed UInDeSI4.0 approach through its experimentation on the well-known UNSW-NB15 Industry 4.0 dataset. The proposed UInDeSI4.0 employs feature selection approaches to obtain minimal and optimal features. These features are then used to train isolation forest to detect network traffic threats in an unsupervised manner. Accordingly, the proposed UInDeSI4.0 approach can efficiently differentiate between the normal events and the attacks or intrusions in environments with no label information. Experimental results show that the proposed UInDeSI4.0 provides better accuracy (63%) and a minimal feature set (nine) compared to traditional IDSs. In contrast to deep learning approaches, UInDeSI4.0 generates faster results with minimum features. In conclusion, we establish the superiority of UInDeSI4.0 approach as an accurate and computationally efficient IDS for Industry 4.0.
YSO-asiasanat: tuotantotekniikka; älytekniikka; kyberturvallisuus; verkkohyökkäykset; valvontajärjestelmät
Vapaat asiasanat: isolation forest; industry 4.0; intrusion detection; ICA; random forest; principal component analysis
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2023
JUFO-taso: 2