A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
UInDeSI4.0 : An efficient Unsupervised Intrusion Detection System for network traffic flow in Industry 4.0 ecosystem (2023)


Shukla, A., Srivastav, S., Kumar, S., & Muhuri, P. (2023). UInDeSI4.0 : An efficient Unsupervised Intrusion Detection System for network traffic flow in Industry 4.0 ecosystem. Engineering Applications of Artificial Intelligence, 120, Article 105848. https://doi.org/10.1016/j.engappai.2023.105848


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatShukla, Amit, K.; Srivastav, Shubham; Kumar, Sandeep; Muhuri, Pranab, K.

Lehti tai sarjaEngineering Applications of Artificial Intelligence

ISSN0952-1976

eISSN1873-6769

Julkaisuvuosi2023

Ilmestymispäivä27.01.2023

Volyymi120

Artikkelinumero105848

KustantajaElsevier BV

JulkaisumaaBritannia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1016/j.engappai.2023.105848

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/85389


Tiivistelmä

In an Industry 4.0 ecosystem, all the essential components are digitally interconnected, and automation is integrated for higher productivity. However, it invites the risk of increasing cyber-attacks amid the current cyber explosion. The identification and monitoring of these malicious cyber-attacks and intrusions need efficient threat intelligence techniques or intrusion detection systems (IDSs). Reducing the false positive rate in detecting cyber threats is an important step for a safer and reliable environment in any industrial ecosystem. Available approaches for intrusion detection often suffer from high computational costs due to large number of feature instances. Therefore, this paper proposes a novel unsupervised IDS for Industry 4.0 which we term as: Unsupervised Intrusion Detection System for Industry 4.0 (UInDeSI4.0). We have substantiated the proposed UInDeSI4.0 approach through its experimentation on the well-known UNSW-NB15 Industry 4.0 dataset. The proposed UInDeSI4.0 employs feature selection approaches to obtain minimal and optimal features. These features are then used to train isolation forest to detect network traffic threats in an unsupervised manner. Accordingly, the proposed UInDeSI4.0 approach can efficiently differentiate between the normal events and the attacks or intrusions in environments with no label information. Experimental results show that the proposed UInDeSI4.0 provides better accuracy (63%) and a minimal feature set (nine) compared to traditional IDSs. In contrast to deep learning approaches, UInDeSI4.0 generates faster results with minimum features. In conclusion, we establish the superiority of UInDeSI4.0 approach as an accurate and computationally efficient IDS for Industry 4.0.


YSO-asiasanattuotantotekniikkaälytekniikkakyberturvallisuusverkkohyökkäyksetvalvontajärjestelmät

Vapaat asiasanatisolation forest; industry 4.0; intrusion detection; ICA; random forest; principal component analysis


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2023

JUFO-taso2


Viimeisin päivitys 2024-12-10 klo 15:45