A1 Journal article (refereed)
Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1α (2023)


Fachada, V., Silvennoinen, M., Sahinaho, U.-M., Rahkila, P., Kivelä, R., Hulmi, J. J., Kujala, U., & Kainulainen, H. (2023). Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1α. International Journal of Molecular Sciences, 24(5), Article 4282. https://doi.org/10.3390/ijms24054282


JYU authors or editors


Publication details

All authors or editorsFachada, Vasco; Silvennoinen, Mika; Sahinaho, Ulla-Maria; Rahkila, Paavo; Kivelä, Riikka; Hulmi, Juha J.; Kujala, Urho; Kainulainen, Heikki

Journal or seriesInternational Journal of Molecular Sciences

ISSN1661-6596

eISSN1422-0067

Publication year2023

Publication date21/02/2023

Volume24

Issue number5

Article number4282

PublisherMDPI AG

Publication countrySwitzerland

Publication languageEnglish

DOIhttps://doi.org/10.3390/ijms24054282

Publication open accessOpenly available

Publication channel open accessOpen Access channel

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/85621


Abstract

Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α�) in cytosolic and nuclear pools, we mimicked exercise-induced contractions in C2C12 myotubes by electrical pulse stimulation (EPS), with or without BCAA deprivation. The life-long physically active twins displayed an increased IMCL signal in type I fibers when compared to their inactive twin pair. Moreover, the inactive twins showed a decreased association between PLIN2 and IMCL. Similarly, in the C2C12 cell line, PLIN2 dissociated from IMCL when myotubes were deprived of BCAA, especially when contracting. In addition, in myotubes, EPS led to an increase in nuclear PLIN5 signal and its associations with IMCL and PGC-1α�. This study demonstrates how physical activity and BCAA availability affects IMCL and their associated proteins, providing further and novel evidence for the link between the BCAA, energy and lipid metabolisms.


Keywordsphysical activityhealth effectsphysical trainingmetabolismlipidsproteinsamino acids

Free keywordslipid droplets; PLIN2; PLIN5; skeletal muscle; physical activity; C2C12; electrical pulse stimulation; EPS; subcellular localization


Contributing organizations


Related projects


Ministry reportingYes

Reporting Year2023

Preliminary JUFO rating1


Last updated on 2024-03-04 at 17:26