A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
A deep learning model developed for sleep apnea detection : A multi-center study (2023)
Li, F., Xu, Y., Chen, J., Lu, P., Zhang, B., & Cong, F. (2023). A deep learning model developed for sleep apnea detection : A multi-center study. Biomedical Signal Processing and Control, 85, Article 104689. https://doi.org/10.1016/j.bspc.2023.104689
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Li, Fan; Xu, Yan; Chen, Junjun; Lu, Ping; Zhang, Bin; Cong, Fengyu
Lehti tai sarja: Biomedical Signal Processing and Control
ISSN: 1746-8094
eISSN: 1746-8108
Julkaisuvuosi: 2023
Ilmestymispäivä: 20.03.2023
Volyymi: 85
Artikkelinumero: 104689
Kustantaja: Elsevier BV
Julkaisumaa: Britannia
Julkaisun kieli: englanti
DOI: https://doi.org/10.1016/j.bspc.2023.104689
Linkki tutkimusaineistoon: https://github.com/Lifanfan-dlut/OSA-detection
Julkaisun avoin saatavuus: Ei avoin
Julkaisukanavan avoin saatavuus:
Tiivistelmä
Objective. Manual detection of obstructive sleep apnea (OSA) is a challenging task for many reasons such as time-consuming and subjective. This study aimed to develop a deep learning model for automatically detecting abnormal sleep respiratory episodes in patients with OSA and to explore the performance differences between different sleep centers and different kind of sleep monitoring devices. Methods. The proposed model which comprised branch convolution, separable convolution, and self-attention mechanisms, took minute-to-minute raw electroencephalography (EEG) and oral-nasal airflow signals as its input. Results. The results of five-fold cross-validation in 50 clinical polysomnography recordings evidenced that the average accuracy was 0.877, with a sensitivity and specificity of 0.837, and 0.873, respectively. The proposed method achieved almost perfect agreement with manual scoring method according to the apnea-hypopnea index. In addition, experiments revealed that the combination of EEG and oral-nasal airflow signals could improve the accuracy of approximately 10% relative to oral-nasal airflow signals. Furthermore, a significant difference (P < 0.05) in performance between different sleep centers and different sleep-monitoring devices was also observed. Conclusion and significance. The proposed model achieved a comparably high performance in three different sleep centers, indicating its feasibility and robustness. This study suggested the reliable and simple alternative to clinical OSA screening. The model and data can be found at https://github.com/Lifanfan-dlut/OSA-detection.
YSO-asiasanat: unihäiriöt; uniapnea-oireyhtymä; diagnostiikka; EEG; koneoppiminen; syväoppiminen
Vapaat asiasanat: electroencephalography; multi-center; obstructive sleep apnea; deep learning
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2023
JUFO-taso: 1