A1 Journal article (refereed)
Synthesis, X-ray Structure of Two Hexa-Coordinated Ni(II) Complexes with s-Triazine Hydrazine Schiff Base Ligand (2023)


Fathalla, E. M., Abu-Youssef, M. A. M., Sharaf, M. M., El-Faham, A., Barakat, A., Haukka, M., & Soliman, S. M. (2023). Synthesis, X-ray Structure of Two Hexa-Coordinated Ni(II) Complexes with s-Triazine Hydrazine Schiff Base Ligand. Inorganics, 11(5), Article 222. https://doi.org/10.3390/inorganics11050222


JYU authors or editors


Publication details

All authors or editorsFathalla, Eman M.; Abu-Youssef, Morsy A. M.; Sharaf, Mona M.; El-Faham, Ayman; Barakat, Assem; Haukka, Matti; Soliman, Saied M.

Journal or seriesInorganics

eISSN2304-6740

Publication year2023

Publication date21/05/2023

Volume11

Issue number5

Article number222

PublisherMDPI AG

Publication countrySwitzerland

Publication languageEnglish

DOIhttps://doi.org/10.3390/inorganics11050222

Publication open accessOpenly available

Publication channel open accessOpen Access channel

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/87285

Additional informationSpecial Issue 10th Anniversary of Inorganics: Coordination Chemistry


Abstract

The hydrazine s-triazine ligand (E)-4,4’-(6-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)-1,3,5-triazine-2,4-diyl)dimorpholine (DMPT) was used to synthesize two new Ni(II) complexes via a self-assembly technique. The two complexes were synthesized by a one-pot synthesis strategy and characterized by elemental analysis, FTIR and single-crystal X-ray diffraction analysis to be [Ni(DMPT)(H2O)3](NO3)2.3H2O (1) and [Ni(DMPT)(H2O)3](NO3)2.H2O (2). The structures of both complexes were very similar regarding the coordination sphere and counter anions, but differ only in the number of the crystal water molecules. In the case of complex 1, there are three water molecules instead of one H2O molecule as in complex 2. In the two complexes, the DMPT ligand acts as a neutral tridentate NNN-chelate via three Ni–N coordination interactions. The coordination sphere of the Ni(II) ion is completed by three water molecules. As a result, the two complexes exhibit distorted octahedral geometry. The Hirshfeld surfaces around each entity in both complexes have been computed. Subsequently, their corresponding intermolecular interactions were quantified separately. Because the number of crystal water molecules is different in both complexes, their monomeric units are connected differently in their crystal structures where the crystal water molecules act as both hydrogen bond donor and acceptor. The polar O…H interactions are the most dominant in all entities of both complexes. As a result, strong O…H interactions are the driving force in the crystal packing of both complexes, and this is attributed to the presence of the nitrate anions and water molecules. The antimicrobial activity of the free ligand and complex 1 were determined against two selected fungal species, Gram-negative and Gram-positive bacterial strains. The free ligand was found to be inactive against all microbial species. On the other hand, the Ni(II) complex 1 was found active against the Gram-positive bacterial species Bacillus subtilis and also the Gram-negative bacterial species Escherichia coli. The respective inhibition zone diameter of the Ni(II) complex was 12 and 11 mm, respectively.


Keywordscoordination complexesantimicrobial compoundsx-ray crystallographynickel

Free keywordss-triazine hydrazone; molecular packing; X-ray; Ni(II) complexes; Hirshfeld surface; antimicrobial


Contributing organizations


Ministry reportingYes

VIRTA submission year2023

JUFO rating1


Last updated on 2024-03-07 at 00:06