A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Stationary subspace analysis based on second-order statistics (2024)


Flumian, L., Matilainen, M., Nordhausen, K., & Taskinen, S. (2024). Stationary subspace analysis based on second-order statistics. Journal of Computational and Applied Mathematics, 436, Article 115379. https://doi.org/10.1016/j.cam.2023.115379


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatFlumian, Lea; Matilainen, Markus; Nordhausen, Klaus; Taskinen, Sara

Lehti tai sarjaJournal of Computational and Applied Mathematics

ISSN0377-0427

eISSN1879-1778

Julkaisuvuosi2024

Ilmestymispäivä10.06.2023

Volyymi436

Artikkelinumero115379

KustantajaElsevier BV

JulkaisumaaBelgia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1016/j.cam.2023.115379

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Rinnakkaistallenteen verkko-osoite (pre-print)https://arxiv.org/abs/2103.06148


Tiivistelmä

In stationary subspace analysis (SSA) one assumes that the observable p-variate time series is a linear mixture of a k-variate nonstationary time series and a (p – k)-variate stationary time series. The aim is then to estimate the unmixing matrix which transforms the observed multivariate time series onto stationary and nonstationary components. In the classical approach multivariate data are projected onto stationary and nonstationary subspaces by minimizing a Kullback–Leibler divergence between Gaussian distributions, and the method only detects nonstationarities in the first two moments. In this paper we consider SSA in a more general multivariate time series setting and propose SSA methods which are able to detect nonstationarities in mean, variance and autocorrelation, or in all of them. Simulation studies illustrate the performances of proposed methods, and it is shown that especially the method that detects all three types of nonstationarities performs well in various time series settings. The paper is concluded with an illustrative example.


YSO-asiasanataikasarjataikasarja-analyysimonimuuttujamenetelmät

Vapaat asiasanatautocorrelation; joint diagonalization; multivariate time series; second-order stationary; supervised dimension reduction


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2024

Alustava JUFO-taso1


Viimeisin päivitys 2024-03-07 klo 00:46