A1 Journal article (refereed)
Temperature, phosphorus and species composition will all influence phytoplankton production and content of polyunsaturated fatty acids (2023)


Calderini, M. L., Pääkkönen, S., Salmi, P., Peltomaa, E., & Taipale, S. J. (2023). Temperature, phosphorus and species composition will all influence phytoplankton production and content of polyunsaturated fatty acids. Journal of Plankton Research, 45(4), 625-635. https://doi.org/10.1093/plankt/fbad026


JYU authors or editors


Publication details

All authors or editorsCalderini, Marco L.; Pääkkönen, Salli; Salmi, Pauliina; Peltomaa, Elina; Taipale, Sami J.

Journal or seriesJournal of Plankton Research

ISSN0142-7873

eISSN1464-3774

Publication year2023

Publication date24/06/2023

Volume45

Issue number4

Pages range625-635

PublisherOxford University Press (OUP)

Publication countryUnited Kingdom

Publication languageEnglish

DOIhttps://doi.org/10.1093/plankt/fbad026

Publication open accessOpenly available

Publication channel open accessPartially open access channel

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/88243


Abstract

Temperature increases driven by climate change are expected to decrease the availability of polyunsaturated fatty acids in lakes worldwide. Nevertheless, a comprehensive understanding of the joint effects of lake trophic status, nutrient dynamics and warming on the availability of these biomolecules is lacking. Here, we conducted a laboratory experiment to study how warming (18–23°C) interacts with phosphorus (0.65–2.58 μM) to affect phytoplankton growth and their production of polyunsaturated fatty acids. We included 10 species belonging to the groups diatoms, golden algae, cyanobacteria, green algae, cryptophytes and dinoflagellates. Our results show that both temperature and phosphorus will boost phytoplankton growth, especially stimulating certain cyanobacteria species (Microcystis sp.). Temperature and phosphorus had opposing effects on polyunsaturated fatty acid proportion, but responses are largely dependent on species. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) synthesizing species did not clearly support the idea that warming decreases the production or content of these essential polyunsaturated fatty acids. Our results suggest that warming may have different effects on the polyunsaturated fatty acid availability in lakes with different nutrient levels, and that different species within the same phytoplankton group can have contrasting responses to warming. Therefore, we conclude that future production of EPA and DHA is mainly determined by species composition.


Keywordsplanktonfatty acidslakesphosphorusclimate changestemperature

Free keywordsphytoplankton; polyunsaturated fatty acids; lake; climate change; temperature; phosphorus


Contributing organizations


Related projects


Ministry reportingYes

VIRTA submission year2023

JUFO rating1


Last updated on 2024-03-07 at 01:46