A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector (2023)


DUNE Collaboration. (2023). Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector. Physical Review D, 107(9), Article 092012. https://doi.org/10.1103/PhysRevD.107.092012


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatDUNE Collaboration

Lehti tai sarjaPhysical Review D

ISSN2470-0010

eISSN2470-0029

Julkaisuvuosi2023

Ilmestymispäivä30.05.2023

Volyymi107

Lehden numero9

Artikkelinumero092012

KustantajaAmerican Physical Society (APS)

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1103/PhysRevD.107.092012

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/88314


Tiivistelmä

Measurements of electrons from νe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.


YSO-asiasanathiukkasfysiikka


Liittyvät organisaatiot

JYU-yksiköt:


OKM-raportointiKyllä

Raportointivuosi2023

Alustava JUFO-taso2


Viimeisin päivitys 2024-30-04 klo 20:16