A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Graphs and Kernelized Learning Applied to Interactions of Hydrogen with Doped Gold Nanoparticle Electrocatalysts (2023)


Pihlajamäki, A., Malola, S., Kärkkäinen, T., & Häkkinen, H. (2023). Graphs and Kernelized Learning Applied to Interactions of Hydrogen with Doped Gold Nanoparticle Electrocatalysts. Journal of Physical Chemistry C, 127(29), 14211-14221. https://doi.org/10.1021/acs.jpcc.3c02539


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatPihlajamäki, Antti; Malola, Sami; Kärkkäinen, Tommi; Häkkinen, Hannu

Lehti tai sarjaJournal of Physical Chemistry C

ISSN1932-7447

eISSN1932-7455

Julkaisuvuosi2023

Ilmestymispäivä18.07.2023

Volyymi127

Lehden numero29

Artikkelin sivunumerot14211-14221

KustantajaAmerican Chemical Society

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1021/acs.jpcc.3c02539

Linkki tutkimusaineistoonhttps://doi.org/10.17011/jyx/dataset/87521

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/88949

LisätietojaPublished as part of The Journal of Physical Chemistry C virtual special issue “Machine Learning in Physical Chemistry, Volume 2".


Tiivistelmä

Understanding hydrogen adsorption on metal nanoparticles is a key prerequisite for designing efficient electrocatalysts for water splitting and the hydrogen evolution reaction. However, this seemingly simple elementary reaction step is affected by several factors arising from the chemical environment at the catalyst, and deciphering the most important contributions to optimal interactions requires numerically heavy electronic structure calculations. Here, we combine graph-based representations of the local atomic environment of hydrogen in copper- and palladium-doped 25-atom gold nanoparticles with several kernel-based machine learning (ML) methods to predict the interaction energy between hydrogen and the nanoparticle catalyst. We demonstrate that simple distance-based kernel models are able to predict the interaction energy within 0.1 eV when trained by reference data from state-of-the-art density functional theory calculations. Analyzing the model performance with respect to attributes of the hydrogen node highlights the locality of hydrogen adsorption. This implies the viability of combining graphs with kernel-based ML models for studying hydrogen chemisorption in complex environment data efficiently.


YSO-asiasanatkoneoppiminenadsorptiokultavetyvesinanohiukkaset

Vapaat asiasanatinteraction energies


Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

Raportointivuosi2023

JUFO-taso2


Viimeisin päivitys 2024-15-05 klo 13:14