A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data (2023)


Zhang, C., Lin, Q., Niu, Y., Li, W., Gong, X., Cong, F., Wang, Y., & Calhoun, V. D. (2023). Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data. Human Brain Mapping, 44(17), 5712-5728. https://doi.org/10.1002/hbm.26471


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatZhang, Chao‐Ying; Lin, Qiu‐Hua; Niu, Yan‐Wei; Li, Wei‐Xing; Gong, Xiao‐Feng; Cong, Fengyu; Wang, Yu‐Ping; Calhoun, Vince D.

Lehti tai sarjaHuman Brain Mapping

ISSN1065-9471

eISSN1097-0193

Julkaisuvuosi2023

Ilmestymispäivä30.08.2023

Volyymi44

Lehden numero17

Artikkelin sivunumerot5712-5728

KustantajaWiley

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1002/hbm.26471

Linkki tutkimusaineistoonhttps://www.humanconnectome.org/

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusKokonaan avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/89050


Tiivistelmä

Brain networks extracted by independent component analysis (ICA) from magnitude-only fMRI data are usually denoised using various amplitude-based thresholds. By contrast, spatial source phase (SSP) or the phase information of ICA brain networks extracted from complex-valued fMRI data, has provided a simple yet effective way to perform the denoising using a fixed phase change. In this work, we extend the approach to magnitude-only fMRI data to avoid testing various amplitude thresholds for denoising magnitude maps extracted by ICA, as most studies do not save the complex-valued data. The main idea is to generate a mathematical SSP map for a magnitude map using a mapping framework, and the mapping framework is built using complex-valued fMRI data with a known SSP map. Here we leverage the fact that the phase map derived from phase fMRI data has similar phase information to the SSP map. After verifying the use of the magnitude data of complex-valued fMRI, this framework is generalized to work with magnitude-only data, allowing use of our approach even without the availability of the corresponding phase fMRI datasets. We test the proposed method using both simulated and experimental fMRI data including complex-valued data from University of New Mexico and magnitude-only data from Human Connectome Project. The results provide evidence that the mathematical SSP denoising with a fixed phase change is effective for denoising spatial maps from magnitude-only fMRI data in terms of retaining more BOLD-related activity and fewer unwanted voxels, compared with amplitude-based thresholding. The proposed method provides a unified and efficient SSP approach to denoise ICA brain networks in fMRI data.


YSO-asiasanatriippumattomien komponenttien analyysitoiminnallinen magneettikuvausaivot

Vapaat asiasanatfMRI; independent component analysis; denoising; mathematical spatial source phase; mapping framework; fixed phase change


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2023

JUFO-taso2


Viimeisin päivitys 2024-12-10 klo 17:45