A1 Journal article (refereed)
Filling minimality and Lipschitz-volume rigidity of convex bodies among integral current spaces (2023)


Basso, G., Creutz, P., & Soultanis, E. (2023). Filling minimality and Lipschitz-volume rigidity of convex bodies among integral current spaces. Journal für die reine und angewandte Mathematik, 2023(805), 213-239. https://doi.org/10.1515/crelle-2023-0076


JYU authors or editors


Publication details

All authors or editorsBasso, Giuliano; Creutz, Paul; Soultanis, Elefterios

Journal or seriesJournal für die reine und angewandte Mathematik

ISSN0075-4102

eISSN1435-5345

Publication year2023

Publication date01/11/2023

Volume2023

Issue number805

Pages range213-239

PublisherDe Gruyter

Publication countryGermany

Publication languageEnglish

DOIhttps://doi.org/10.1515/crelle-2023-0076

Publication open accessNot open

Publication channel open access

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/93505

Web address of parallel published publication (pre-print)https://arxiv.org/abs/2209.12545


Abstract

In this paper we consider metric fillings of boundaries of convex bodies. We show that convex bodies are the unique minimal fillings of their boundary metrics among all integral current spaces. To this end, we also prove that convex bodies enjoy the Lipschitz-volume rigidity property within the category of integral current spaces, which is well known in the smooth category. As further applications of this result, we prove a variant of Lipschitz-volume rigidity for round spheres and answer a question of Perales concerning the intrinsic flat convergence of minimizing sequences for the Plateau problem.


Keywordsdifferential geometry


Contributing organizations


Ministry reportingYes

VIRTA submission year2023

JUFO rating3


Last updated on 2024-12-10 at 18:15