A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Augmenting machine learning with human insights : the model development for B2B personalization (2024)


Yaghtin, S., & Mero, J. (2024). Augmenting machine learning with human insights : the model development for B2B personalization. Journal of Business and Industrial Marketing, 39(6), 1192-1208. https://doi.org/10.1108/jbim-02-2023-0073


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatYaghtin, Shahrzad; Mero, Joel

Lehti tai sarjaJournal of Business and Industrial Marketing

ISSN0885-8624

eISSN2052-1189

Julkaisuvuosi2024

Ilmestymispäivä01.01.2024

Volyymi39

Lehden numero6

Artikkelin sivunumerot1192-1208

KustantajaEmerald

JulkaisumaaBritannia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1108/jbim-02-2023-0073

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/92923


Tiivistelmä

Purpose
Machine learning (ML) techniques are increasingly important in enabling business-to-business (B2B) companies to offer personalized services to business customers. On the other hand, humans play a critical role in dealing with uncertain situations and the relationship-building aspects of a B2B business. Most existing studies advocating human-ML augmentation simply posit the concept without providing a detailed view of augmentation. Therefore, the purpose of this paper is to investigate how human involvement can practically augment ML capabilities to develop a personalized information system (PIS) for business customers.

Design/methodology/approach
The authors developed a research framework to create an integrated human-ML PIS for business customers. The PIS was then implemented in the energy sector. Next, the accuracy of the PIS was evaluated using customer feedback. To this end, precision, recall and F1 evaluation metrics were used.

Findings
The computed figures of precision, recall and F1 (respectively, 0.73, 0.72 and 0.72) were all above 0.5; thus, the accuracy of the model was confirmed. Finally, the study presents the research model that illustrates how human involvement can augment ML capabilities in different stages of creating the PIS including the business/market understanding, data understanding, data collection and preparation, model creation and deployment and model evaluation phases.

Originality/value
This paper offers novel insight into the less-known phenomenon of human-ML augmentation for marketing purposes. Furthermore, the study contributes to the B2B personalization literature by elaborating on how human experts can augment ML computing power to create a PIS for business customers.


YSO-asiasanatkoneoppiminenyritysasiakkaatyritysmarkkinointitietojärjestelmät

Vapaat asiasanatmachine learning; B2B personalization; human-machine learning augmentation; personalized marketing; business customers; personalized information system


Liittyvät organisaatiot

JYU-yksiköt:


OKM-raportointiKyllä

VIRTA-lähetysvuosi2024

Alustava JUFO-taso1


Viimeisin päivitys 2024-14-09 klo 20:06