A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Simultaneously segmenting and classifying cell nuclei by using multi-task learning in multiplex immunohistochemical tissue microarray sections (2024)


Wang, R., Qiu, Y., Hao, X., Jin, S., Gao, J., Qi, H., Xu, Q., Zhang, Y., & Xu, H. (2024). Simultaneously segmenting and classifying cell nuclei by using multi-task learning in multiplex immunohistochemical tissue microarray sections. Biomedical Signal Processing and Control, 93, Article 106143. https://doi.org/10.1016/j.bspc.2024.106143


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatWang, Ranran; Qiu, Yusong; Hao, Xinyu; Jin, Shan; Gao, Junxiu; Qi, Heng; Xu, Qi; Zhang, Yong; Xu, Hongming

Lehti tai sarjaBiomedical Signal Processing and Control

ISSN1746-8094

eISSN1746-8108

Julkaisuvuosi2024

Volyymi93

Artikkelinumero106143

KustantajaElsevier

JulkaisumaaAlankomaat

Julkaisun kielienglanti

DOIhttps://doi.org/10.1016/j.bspc.2024.106143

Linkki tutkimusaineistoonhttps://zenodo.org/record/7647846

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/94000

LisätietojaSource codes: https://github.com/RanrWang/SRSA-Net


Tiivistelmä

Quantitative analysis of tumor immune microenvironment (TIME) in immunohistochemical (IHC) tissue microarray (TMA) sections is crucial in diagnosis and treatment recommendations for cancer patients. Nuclei segmentation and classification are the prerequisites for the TIME quantification, but it still lacks of robust nuclear quantification models used for IHC histological slides. In this paper, we design an approach for simultaneously segmenting and classifying cell nuclei in multiplex IHC TMA sections. The large TMA tissue core is first divided into a set of small overlapping patches, where cell nuclei are then simultaneously segmented and classified by using our multi-task learning model. The model has one feature encoder with cascaded separable-ResUnit blocks, and three decoder branches that incorporate the Self-Attention modules and DenseUnit blocks to perform nuclear segmentation, classification and distance map regression, respectively. After processing all patches, the weighted loss map and vote mechanism are applied to seamlessly stitch patch-level predictions to form the tissue core level results. We finally exploit generalized Laplacian of Gaussian (gLoG) filters based algorithm to post-process segmentation results to further split overlapping cell nuclei. Quantitative evaluations have been performed on a IHC stained histological image dataset with 9725 manually identified cell nuclei and a public H&E stained dataset (CoNSep), which show that our model outperforms state-of-the-art nuclei segmentation and classification models. The qualitative evaluations on TMA sections show the potential of using our approach in clinical applications.


YSO-asiasanatsyöpätauditdiagnostiikkaalgoritmit

Vapaat asiasanatnuclei segmentation and classification; self-attention mechanism; depth-wise separable convolution; tissue microarray sections


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2024

Alustava JUFO-taso1


Viimeisin päivitys 2024-02-07 klo 23:06