A4 Article in conference proceedings
Deep Homeomorphic Data Encryption for Privacy Preserving Machine Learning (2024)
Terziyan, V., Bilokon, B., & Gavriushenko, M. (2024). Deep Homeomorphic Data Encryption for Privacy Preserving Machine Learning. In F. Longo, W. Shen, & A. Padovano (Eds.), 5th International Conference on Industry 4.0 and Smart Manufacturing (ISM 2023) (pp. 2201-2212). Elsevier. Procedia Computer Science, 232. https://doi.org/10.1016/j.procs.2024.02.039
JYU authors or editors
Publication details
All authors or editors: Terziyan, Vagan; Bilokon, Bohdan; Gavriushenko, Mariia
Parent publication: 5th International Conference on Industry 4.0 and Smart Manufacturing (ISM 2023)
Parent publication editors: Longo, Francesco; Shen, Weiming; Padovano, Antonio
Conference:
- International Conference on Industry 4.0 and Smart Manufacturing
Place and date of conference: Lisbon, Portugal, 22.-24.11.2023
Journal or series: Procedia Computer Science
ISSN: 1877-0509
eISSN: 1877-0509
Publication year: 2024
Publication date: 20/03/2024
Number in series: 232
Pages range: 2201-2212
Number of pages in the book: 3277
Publisher: Elsevier
Publication country: Netherlands
Publication language: English
DOI: https://doi.org/10.1016/j.procs.2024.02.039
Publication open access: Openly available
Publication channel open access: Open Access channel
Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/94147
Abstract
See presentation slides: https://ai.it.jyu.fi/ISM-2023-Encryption_Metric.pptx
Keywords: manufacturing engineering; intelligent systems; machine learning; data protection; encryption
Free keywords: smart manufacturing; data privacy; privacy-preserving machine learning; quality metric; homeomorphic encryption
Contributing organizations
Ministry reporting: Yes
VIRTA submission year: 2024
Preliminary JUFO rating: 1