A4 Artikkeli konferenssijulkaisussa
Examining Privacy and Trust Issues at the Edge of Isomorphic IoT Architectures : Case Liquid AI (2023)
Agbese, M., Mäkitalo, N., Waseem, M., Mohanani, R., Abrahamsson, P., & Mikkonen, T. (2023). Examining Privacy and Trust Issues at the Edge of Isomorphic IoT Architectures : Case Liquid AI. In N. Kawaguchi, K. Yasumoto, T. Riedel, & A. Ding (Eds.), IoT '23 : Proceedings of the 13th International Conference on the Internet of Things (pp. 245-252). ACM. https://doi.org/10.1145/3627050.3631574
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Agbese, Mamia; Mäkitalo, Niko; Waseem, Muhammad; Mohanani, Rahul; Abrahamsson, Pekka; Mikkonen, Tommi
Emojulkaisu: IoT '23 : Proceedings of the 13th International Conference on the Internet of Things
Emojulkaisun toimittajat: Kawaguchi, Nobuo; Yasumoto, Keiichi; Riedel, Till; Ding, Aaron
Konferenssin paikka ja aika: Nagoya, Japan, 7.-10.11.2023
eISBN: 979-8-4007-0854-1
Julkaisuvuosi: 2023
Ilmestymispäivä: 22.03.2024
Artikkelin sivunumerot: 245-252
Kustantaja: ACM
Kustannuspaikka: New York
Julkaisumaa: Yhdysvallat (USA)
Julkaisun kieli: englanti
DOI: https://doi.org/10.1145/3627050.3631574
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Osittain avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/94281
Tiivistelmä
The growing domain of liquidity in computing extends its boundaries to include advancements like liquid artificial intelligence (AI). Liquid AI leverages liquid software using isomorphic Internet of Things (IoT) architecture to enhance computation at the edge. This innovation unveils vast opportunities yet also introduces significant challenges, particularly around privacy and trust. We explore the vulnerabilities that might hinder the progression of this technological fusion toward achieving trustworthy AI. Through an intensive examination of the literature, this research highlights the heightened threats to data integrity and stakeholder trust in these evolving ecosystems. Four main challenges: Data collection, Data storage and Access, Data utilization and sharing, and Surveillance and profiling were identified and examined under privacy, and two, Algorithms and decision-making and Security of IoT infrastructure under trust. The concerns are further categorized to highlight their impact on the development of trustworthy AI. The study acknowledges the early state of the field. Consequently, this research navigates through the limited available literature, initiating a pioneering discourse emphasizing fostering a foundation for developing secure and trustworthy Liquid AI environments.
YSO-asiasanat: tekoäly; reunalaskenta; esineiden internet; tietosuoja
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2024
Alustava JUFO-taso: 1