A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
A Priori Estimates for the Motion of Charged Liquid Drop : A Dynamic Approach via Free Boundary Euler Equations (2024)


Julin, V., & La Manna Domenico, A. (2024). A Priori Estimates for the Motion of Charged Liquid Drop : A Dynamic Approach via Free Boundary Euler Equations. Journal of Mathematical Fluid Mechanics, 26(3), Article 48. https://doi.org/10.1007/s00021-024-00883-2


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatJulin, Vesa; La Manna Domenico, Angelo

Lehti tai sarjaJournal of Mathematical Fluid Mechanics

ISSN1422-6928

eISSN1422-6952

Julkaisuvuosi2024

Ilmestymispäivä07.06.2024

Volyymi26

Lehden numero3

Artikkelinumero48

KustantajaSpringer

JulkaisumaaSaksa

Julkaisun kielienglanti

DOIhttps://doi.org/10.1007/s00021-024-00883-2

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/95920

Julkaisu on rinnakkaistallennettuhttps://arxiv.org/abs/2111.10158


Tiivistelmä

We study the motion of charged liquid drop in three dimensions where the equations of motions are given by
the Euler equations with free boundary with an electric field. This is a well-known problem in physics going back to the famous work by Rayleigh. Due to experiments and numerical simulations one may expect the charged drop to form conicalsingularities called Taylor cones, which we interpret as singularities of the flow. In this paper, we study the well-posednessof the problem and regularity of the solution. Our main theorem is a criterion which roughly states that if the flow remains C1,α-regular in shape and the velocity remains Lipschitz-continuous, then the flow remains smooth, i.e., C∞ in time and space, assuming that the initial data is smooth. Our main focus is on the regularity of the shape of the drop. Indeed, due to the appearance of Taylor cones, which are singularities with Lipschitz-regularity, we expect the C1,α-regularity assumption to be optimal. We also quantify the C∞-regularity via high order energy estimates which, in particular, impliesthe well-posedness of the problem.


YSO-asiasanatosittaisdifferentiaaliyhtälötnesteetpisaratsähkökentäthydromekaniikkahydrodynamiikka

Vapaat asiasanatfluid mechanics; euler equations; regularity theory for incompressible fluids; free boundary; non-local isoperimetric problem; rayleigh threshold


Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

VIRTA-lähetysvuosi2024

Alustava JUFO-taso1


Viimeisin päivitys 2024-03-07 klo 00:46