A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Sleep Stage Classification With Multi-Modal Fusion and Denoising Diffusion Model (2024)


Xu, X., Cong, F., Chen, Y., & Chen, J. (2024). Sleep Stage Classification With Multi-Modal Fusion and Denoising Diffusion Model. IEEE Journal of Biomedical and Health Informatics, Early Access. https://doi.org/10.1109/jbhi.2024.3422472


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatXu, Xu; Cong, Fengyu; Chen, Yongyong; Chen, Junxin

Lehti tai sarjaIEEE Journal of Biomedical and Health Informatics

ISSN2168-2194

eISSN2168-2208

Julkaisuvuosi2024

VolyymiEarly Access

KustantajaInstitute of Electrical and Electronics Engineers (IEEE)

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1109/jbhi.2024.3422472

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus


Tiivistelmä

Sleep stage classification plays a crucial role in sleep quality assessment and sleep disorder prevention. Nowadays, many studies have developed algorithms for this purpose, but they still face two challenges. The first is noise in physiological signals from various devices. The second challenge is that most studies simply concatenate multi-modal features without considering their correlations. To this end, we propose a framework, namely Diff-SleepNet, to efficiently classify sleep stages from multi-modal input. This framework begins with a diffusion model with peak signal-to-noise ratio (PNSR) loss function that adaptively filters noise. The filtered signals are then transformed into a multi-view spectrum through data pre-processing. These spectra are processed by a transformer-based backbone to extract multi-modal features. The production is fed into the following multi-scale attention module for robust feature fusion. The sleep stage category is finally determined by a fully connected layer. Our framework is trained and validated on three typical datasets, i.e., SHHS, Sleep-EDF-SC, and Sleep-EDF-X. Experimental results demonstrate that it is effective and has advantages over other peer methods.


YSO-asiasanatuni (lepotila)meluelektromyografiaaivot

Vapaat asiasanatsleep; feature extraction; electroencephalography; brain modeling; noise reduction; electrooculography; electromyography


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2024

Alustava JUFO-taso2


Viimeisin päivitys 2024-14-10 klo 15:10