A4 Artikkeli konferenssijulkaisussa
"Like a Nesting Doll" : Analyzing Recursion Analogies Generated by CS Students Using Large Language Models (2024)
Bernstein, S., Denny, P., Leinonen, J., Kan, L., Hellas, A., Littlefield, M., Sarsa, S., & Macneil, S. (2024). "Like a Nesting Doll" : Analyzing Recursion Analogies Generated by CS Students Using Large Language Models. In ITiCSE 2024 : Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1 (pp. 122-128). ACM. https://doi.org/10.1145/3649217.3653533
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Bernstein, Seth; Denny, Paul; Leinonen, Juho; Kan, Lauren; Hellas, Arto; Littlefield, Matt; Sarsa, Sami; Macneil, Stephen
Emojulkaisu: ITiCSE 2024 : Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1
Konferenssi:
- Conference on Innovation and Technology in Computer Science Education
Konferenssin paikka ja aika: Milan, Italy, 8.-10.7.2024
eISBN: 979-8-4007-0600-4
Julkaisuvuosi: 2024
Ilmestymispäivä: 03.07.2024
Artikkelin sivunumerot: 122-128
Kirjan kokonaissivumäärä: 754
Kustantaja: ACM
Kustannuspaikka: New York
Julkaisumaa: Yhdysvallat (USA)
Julkaisun kieli: englanti
DOI: https://doi.org/10.1145/3649217.3653533
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Osittain avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/96532
Tiivistelmä
Grasping complex computing concepts often poses a challenge for students who struggle to anchor these new ideas to familiar experiences and understandings. To help with this, a good analogy can bridge the gap between unfamiliar concepts and familiar ones, providing an engaging way to aid understanding. However, creating effective educational analogies is difficult even for experienced instructors. We investigate to what extent large language models (LLMs), specifically ChatGPT, can provide access to personally relevant analogies on demand. Focusing on recursion, a challenging threshold concept, we conducted an investigation analyzing the analogies generated by more than 350 first-year computing students. They were provided with a code snippet and tasked to generate their own recursion-based analogies using ChatGPT, optionally including personally relevant topics in their prompts. We observed a great deal of diversity in the analogies produced with student-prescribed topics, in contrast to the otherwise generic analogies, highlighting the value of student creativity when working with LLMs. Not only did students enjoy the activity and report an improved understanding of recursion, but they described more easily remembering analogies that were personally and culturally relevant.
YSO-asiasanat: tietojenkäsittelytieteet; käsitteet; analogia; chattibotit; tekoäly; korkeakouluopetus
Vapaat asiasanat: analogies; large language models; computing education
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2024
Alustava JUFO-taso: 1