A4 Artikkeli konferenssijulkaisussa
Evaluating Contextually Personalized Programming Exercises Created with Generative AI (2024)


Logacheva, E., Hellas, A., Prather, J., Sarsa, S., & Leinonen, J. (2024). Evaluating Contextually Personalized Programming Exercises Created with Generative AI. In P. Denny, L. Porter, M. Hamilton, & B. Morrison (Eds.), ICER '24 : Proceedings of the 2024 ACM Conference on International Computing Education Research (pp. 95-113). ACM. https://doi.org/10.1145/3632620.3671103


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatLogacheva, Evanfiya; Hellas, Arto; Prather, James; Sarsa, Sami; Leinonen, Juho

EmojulkaisuICER '24 : Proceedings of the 2024 ACM Conference on International Computing Education Research

Emojulkaisun toimittajatDenny, Paul; Porter, Leo; Hamilton, Margaret; Morrison, Briana

Konferenssin paikka ja aikaMelbourne, VIC, Australia13.-15.8.2024

eISBN979-8-4007-0475-8

Julkaisuvuosi2024

Ilmestymispäivä12.08.2024

Sarjan numero38

Artikkelin sivunumerot95-113

Kirjan kokonaissivumäärä528

KustantajaACM

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1145/3632620.3671103

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusKokonaan avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/96600

Rinnakkaistallenteen verkko-osoite (pre-print)https://arxiv.org/abs/2407.11994


Tiivistelmä

Programming skills are typically developed through completing various hands-on exercises. Such programming problems can be contextualized to students’ interests and cultural backgrounds. Prior research in educational psychology has demonstrated that context personalization of exercises stimulates learners’ situational interests and positively affects their engagement. However, creating a varied and comprehensive set of programming exercises for students to practice on is a time-consuming and laborious task for computer science educators. Previous studies have shown that large language models can generate conceptually and contextually relevant programming exercises. Thus, they offer a possibility to automatically produce personalized programming problems to fit students’ interests and needs. This article reports on a user study conducted in an elective introductory programming course that included contextually personalized programming exercises created with GPT-4. The quality of the exercises was evaluated by both the students and the authors. Additionally, this work investigated student attitudes towards the created exercises and their engagement with the system. The results demonstrate that the quality of exercises generated with GPT-4 was generally high. What is more, the course participants found them engaging and useful. This suggests that AI-generated programming problems can be a worthwhile addition to introductory programming courses, as they provide students with a practically unlimited pool of practice material tailored to their personal interests and educational needs.


YSO-asiasanattekoälykielimallitohjelmointitietojenkäsittely

Vapaat asiasanatgenerative AI; large language models; automatic exercise; context personalization


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2024

Alustava JUFO-taso1


Viimeisin päivitys 2024-14-10 klo 15:10