A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
A Workflow for Building Computationally Rational Models of Human Behavior (2024)
Chandramouli, S., Shi, D., Putkonen, A., De Peuter, S., Zhang, S., Jokinen, J., Howes, A., & Oulasvirta, A. (2024). A Workflow for Building Computationally Rational Models of Human Behavior. Computational Brain & Behavior, 7(3), 399-419. https://doi.org/10.1007/s42113-024-00208-6
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Chandramouli, Suyog; Shi, Danqing; Putkonen, Aini; De Peuter, Sebastiaan; Zhang, Shanshan; Jokinen, Jussi; Howes, Andrew; Oulasvirta, Antti
Lehti tai sarja: Computational Brain & Behavior
ISSN: 2522-0861
eISSN: 2522-087X
Julkaisuvuosi: 2024
Ilmestymispäivä: 15.08.2024
Volyymi: 7
Lehden numero: 3
Artikkelin sivunumerot: 399-419
Kustantaja: Springer Nature
Julkaisumaa: Sveitsi
Julkaisun kieli: englanti
DOI: https://doi.org/10.1007/s42113-024-00208-6
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Osittain avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/96674
Rinnakkaistallenteen verkko-osoite (pre-print): https://doi.org/10.31234/osf.io/pcvbm
Tiivistelmä
Computational rationality explains human behavior as arising due to the maximization of expected utility under the constraints imposed by the environment and limited cognitive resources. This simple assumption, when instantiated via partially observable Markov decision processes (POMDPs), gives rise to a powerful approach for modeling human adaptive behavior, within which a variety of internal models of cognition can be embedded. In particular, such an instantiation enables the use of methods from reinforcement learning (RL) to approximate the optimal policy solution to the sequential decision-making problems posed to the cognitive system in any given setting; this stands in contrast to requiring ad hoc hand-crafted rules for capturing adaptive behavior in more traditional cognitive architectures. However, despite their successes and promise for modeling human adaptive behavior across everyday tasks, computationally rational models that use RL are not easy to build. Being a hybrid of theoretical cognitive models and machine learning (ML) necessitates that model building take into account appropriate practices from both cognitive science and ML. The design of psychological assumptions and machine learning decisions concerning reward specification, policy optimization, parameter inference, and model selection are all tangled processes rife with pitfalls that can hinder the development of valid and effective models. Drawing from a decade of work on this approach, a workflow is outlined for tackling this challenge and is accompanied by a detailed discussion of the pros and cons at key decision points.
YSO-asiasanat: mallintaminen; kognitiiviset prosessit; päätöksenteko; rationaalisuus; käyttäytymisanalyysi; koneoppiminen; vahvistusoppiminen
Vapaat asiasanat: computational rationality; resource rationality; modeling workflow; POMDPs
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2024
Alustava JUFO-taso: 1