A4 Artikkeli konferenssijulkaisussa
Deep Reinforcement Learning-enabled Dynamic UAV Deployment and Power Control in Multi-UAV Wireless Networks (2024)
Bai, Y., Chang, Z., & Jäntti, R. (2024). Deep Reinforcement Learning-enabled Dynamic UAV Deployment and Power Control in Multi-UAV Wireless Networks. In M. Valenti, D. Reed, Torres, & Melissa (Eds.), ICC 2024 : IEEE International Conference on Communications (pp. 1286-1290). IEEE. IEEE International Conference on Communications. https://doi.org/10.1109/ICC51166.2024.10622465
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Bai, Yu; Chang, Zheng; Jäntti, Riku
Emojulkaisu: ICC 2024 : IEEE International Conference on Communications
Emojulkaisun toimittajat: Valenti, Matthew; Reed, David; Torres; Melissa
Konferenssin paikka ja aika: Denver, Colorado, USA, 9.-13.6.2024
ISBN: 978-1-7281-9055-6
eISBN: 978-1-7281-9054-9
Lehti tai sarja: IEEE International Conference on Communications
ISSN: 1550-3607
eISSN: 1938-1883
Julkaisuvuosi: 2024
Ilmestymispäivä: 20.08.2024
Artikkelin sivunumerot: 1286-1290
Kustantaja: IEEE
Julkaisumaa: Yhdysvallat (USA)
Julkaisun kieli: englanti
DOI: https://doi.org/10.1109/ICC51166.2024.10622465
Julkaisun avoin saatavuus: Ei avoin
Julkaisukanavan avoin saatavuus:
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/98692
Julkaisu on rinnakkaistallennettu: https://acris.aalto.fi/ws/portalfiles/portal/157755164/Deep_Reinforcement_Learning-enabled_Dynamic_UAV_Deployment_and_Power_Control_in_Multi-UAV_Wireless_Networks.pdf
Tiivistelmä
Using Unmanned Aerial Vehicles (UAVs) as aerial base stations for providing services to ground users has received growing research interest in recent years. The dynamic deployment of UAVs represents a significant research direction within UAV network studies. This paper introduces a highly adaptable UAV wireless network that accounts for the mobility of UAVs and users, the variability in their states, and the tunable transmission power of UAVs. The objective is to maximize energy efficiency while ensuring the minimum number of unserved online users. This dual objective is achieved by jointly optimizing the states, transmission powers, and movement strategies of UAVs. To address the variable state challenges posed by the dynamic environment, user and UAV data is encapsulated within a multi-channel map. A Convolutional Neural Network (CNN) then processes this map to extract key features. The deployment and power control strategy are determined by an agent trained by the Proximal Policy Optimization (PPO)-based Deep Reinforcement Learning (DRL) algorithm. Simulation results demonstrate the effectiveness of the proposed strategy in enhancing energy efficiency and reducing the number of unserved online users.
YSO-asiasanat: miehittämättömät ilma-alukset; langattomat verkot; vahvistusoppiminen; energiajärjestelmät; energiatehokkuus
Liittyvät organisaatiot
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2024
Alustava JUFO-taso: 1