A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Planning cost-effective operational forest inventories (2024)
Karppinen, S., Ene, L., Engberg Sundström, L., & Karvanen, J. (2024). Planning cost-effective operational forest inventories. Biometrics, 80(3), Article ujae104. https://doi.org/10.1093/biomtc/ujae104
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Karppinen, Santeri; Ene, Liviu; Engberg Sundström, Lovisa; Karvanen, Juha
Lehti tai sarja: Biometrics
ISSN: 0006-341X
eISSN: 1541-0420
Julkaisuvuosi: 2024
Ilmestymispäivä: 01.07.2024
Volyymi: 80
Lehden numero: 3
Artikkelinumero: ujae104
Kustantaja: Oxford University Press
Julkaisumaa: Britannia
Julkaisun kieli: englanti
DOI: https://doi.org/10.1093/biomtc/ujae104
Julkaisun avoin saatavuus: Avoimesti saatavilla
Julkaisukanavan avoin saatavuus: Osittain avoin julkaisukanava
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/97405
Tiivistelmä
We address a Bayesian two-stage decision problem in operational forestry where the inner stage considers scheduling the harvesting to fulfill demand targets and the outer stage considers selecting the accuracy of pre-harvest inventories that are used to estimate the timber volumes of the forest tracts. The higher accuracy of the inventory enables better scheduling decisions but also implies higher costs. We focus on the outer stage, which we formulate as a maximization of the posterior value of the inventory decision under a budget constraint. The posterior value depends on the solution to the inner stage problem and its computation is analytically intractable, featuring an NP-hard binary optimization problem within a high-dimensional integral. In particular, the binary optimization problem is a special case of a generalized quadratic assignment problem. We present a practical method that solves the outer stage problem with an approximation which combines Monte Carlo sampling with a greedy, randomized method for the binary optimization problem. We derive inventory decisions for a dataset of 100 Swedish forest tracts across a range of inventory budgets and estimate the value of the information to be obtained.
YSO-asiasanat: metsätalous; bayesilainen menetelmä; päätöksenteko; vuoronnus
Vapaat asiasanat: Bayesian modeling; decision making; forestry; quadratic assignment problem; scheduling; value of information
Liittyvät organisaatiot
Hankkeet, joissa julkaisu on tehty
- Value of information in harvest planning of Nordic forests
- Shavazipour, Babooshka
- Peter Wallenberg Foundation
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2024
Alustava JUFO-taso: 2