A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Planning cost-effective operational forest inventories (2024)


Karppinen, S., Ene, L., Engberg Sundström, L., & Karvanen, J. (2024). Planning cost-effective operational forest inventories. Biometrics, 80(3), Article ujae104. https://doi.org/10.1093/biomtc/ujae104


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatKarppinen, Santeri; Ene, Liviu; Engberg Sundström, Lovisa; Karvanen, Juha

Lehti tai sarjaBiometrics

ISSN0006-341X

eISSN1541-0420

Julkaisuvuosi2024

Ilmestymispäivä01.07.2024

Volyymi80

Lehden numero3

Artikkelinumeroujae104

KustantajaOxford University Press

JulkaisumaaBritannia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1093/biomtc/ujae104

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/97405


Tiivistelmä

We address a Bayesian two-stage decision problem in operational forestry where the inner stage considers scheduling the harvesting to fulfill demand targets and the outer stage considers selecting the accuracy of pre-harvest inventories that are used to estimate the timber volumes of the forest tracts. The higher accuracy of the inventory enables better scheduling decisions but also implies higher costs. We focus on the outer stage, which we formulate as a maximization of the posterior value of the inventory decision under a budget constraint. The posterior value depends on the solution to the inner stage problem and its computation is analytically intractable, featuring an NP-hard binary optimization problem within a high-dimensional integral. In particular, the binary optimization problem is a special case of a generalized quadratic assignment problem. We present a practical method that solves the outer stage problem with an approximation which combines Monte Carlo sampling with a greedy, randomized method for the binary optimization problem. We derive inventory decisions for a dataset of 100 Swedish forest tracts across a range of inventory budgets and estimate the value of the information to be obtained.


YSO-asiasanatmetsätalousbayesilainen menetelmäpäätöksentekovuoronnus

Vapaat asiasanatBayesian modeling; decision making; forestry; quadratic assignment problem; scheduling; value of information


Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

VIRTA-lähetysvuosi2024

Alustava JUFO-taso2


Viimeisin päivitys 2024-19-10 klo 20:26