A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Adaptive and Parallel Split Federated Learning in Vehicular Edge Computing (2024)


Qiang, X., Chang, Z., Hu, Y., Liu, L., & Hämäläinen, T. (2024). Adaptive and Parallel Split Federated Learning in Vehicular Edge Computing. IEEE Internet of Things Journal, Early online. https://doi.org/10.1109/jiot.2024.3479158


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatQiang, Xianke; Chang, Zheng; Hu, Yun; Liu, Lei; Hämäläinen, Timo

Lehti tai sarjaIEEE Internet of Things Journal

ISSN2372-2541

eISSN2372-2541

Julkaisuvuosi2024

Ilmestymispäivä11.10.2024

VolyymiEarly online

KustantajaInstitute of Electrical and Electronics Engineers

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1109/jiot.2024.3479158

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus

Rinnakkaistallenteen verkko-osoite (pre-print) https://doi.org/10.48550/arXiv.2405.18707


Tiivistelmä

Vehicular edge intelligence (VEI) is a promising paradigm for enabling future intelligent transportation systems by accommodating artificial intelligence (AI) at the vehicular edge computing (VEC) system. Federated learning (FL) stands as one of the fundamental technologies facilitating collaborative model training locally and aggregation, while safeguarding the privacy of vehicle data in VEI. However, traditional FL faces challenges in adapting to vehicle heterogeneity, training large models on resource-constrained vehicles, and remaining susceptible to model weight privacy leakage. Meanwhile, split learning (SL) is proposed as a promising collaborative learning framework which can mitigate the risk of model wights leakage, and release the training workload on vehicles. SL sequentially trains a model between a vehicle and an edge cloud (EC) by dividing the entire model into a vehicle-side model and an EC-side model at a given cut layer. In this work, we combine the advantages of SL and FL to develop an Adaptive Split Federated Learning scheme for Vehicular Edge Computing (ASFV). The ASFV scheme adaptively splits the model and parallelizes the training process, taking into account mobile vehicle selection and resource allocation. Our extensive simulations, conducted on non-independent and identically distributed data, demonstrate that the proposed ASFV solution significantly reduces training latency compared to existing benchmarks, while adapting to network dynamics and vehicles’ mobility.


YSO-asiasanatajoneuvottekoälysimulointikoneoppiminenlaskennallinen tiede

Vapaat asiasanatvehicular edge intelligence; federated learning; split learning; split federated learning; adaptive split model


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2024

Alustava JUFO-taso2


Viimeisin päivitys 2024-02-11 klo 20:06