A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
A prospect for computing in porous materials research: Very large fluid flow simulations (2016)


Mattila, K., Puurtinen, T., Hyväluoma, J., Surmas, R., Myllys, M., Turpeinen, T., Robertsén, F., Westerholm, J., & Timonen, J. (2016). A prospect for computing in porous materials research: Very large fluid flow simulations. Journal of Computational Science, 12(January), 62-76. https://doi.org/10.1016/j.jocs.2015.11.013


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatMattila, Keijo; Puurtinen, Tuomas; Hyväluoma, Jari; Surmas, Rodrigo; Myllys, Markko; Turpeinen, Tuomas; Robertsén, Fredrik; Westerholm, Jan; Timonen, Jussi

Lehti tai sarjaJournal of Computational Science

ISSN1877-7503

eISSN1877-7511

Julkaisuvuosi2016

Volyymi12

Lehden numeroJanuary

Artikkelin sivunumerot62–76

KustantajaElsevier B.V.

JulkaisumaaAlankomaat

Julkaisun kielienglanti

DOIhttps://doi.org/10.1016/j.jocs.2015.11.013

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus


Tiivistelmä

Properties of porous materials, abundant both in nature and industry, have broad influences on societies via, e.g. oil recovery, erosion, and propagation of pollutants. The internal structure of many porous materials involves multiple scales which hinders research on the relation between structure and transport properties: typically laboratory experiments cannot distinguish contributions from individual scales while computer simulations cannot capture multiple scales due to limited capabilities. Thus the question arises how large domain sizes can in fact be simulated with modern computers. This question is here addressed using a realistic test case; it is demonstrated that current computing capabilities allow the direct pore-scale simulation of fluid flow in porous materials using system sizes far beyond what has been previously reported. The achieved system sizes allow the closing of some particular scale gaps in, e.g. soil and petroleum rock research. Specifically, a full steady-state fluid flow simulation in a porous material, represented with an unprecedented resolution for the given sample size, is reported: the simulation is executed on a CPU-based supercomputer and the 3D geometry involves 16,3843 lattice cells (around 590 billion of them are pore sites). Using half of this sample in a benchmark simulation on a GPU-based system, a sustained computational performance of 1.77 PFLOPS is observed. These advances expose new opportunities in porous materials research. The implementation techniques here utilized are standard except for the tailored high-performance data layouts as well as the indirect addressing scheme with a low memory overhead and the truly asynchronous data communication scheme in the case of CPU and GPU code versions, respectively.


YSO-asiasanatläpäisevyys

Vapaat asiasanatporous material; fluid flow simulation; lattice Boltzmann method; petascale computing; GPU


Liittyvät organisaatiot

JYU-yksiköt:


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

VIRTA-lähetysvuosi2016

JUFO-taso1


Viimeisin päivitys 2024-11-10 klo 16:01