A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
A prospect for computing in porous materials research: Very large fluid flow simulations (2016)
Mattila, K., Puurtinen, T., Hyväluoma, J., Surmas, R., Myllys, M., Turpeinen, T., Robertsén, F., Westerholm, J., & Timonen, J. (2016). A prospect for computing in porous materials research: Very large fluid flow simulations. Journal of Computational Science, 12(January), 62-76. https://doi.org/10.1016/j.jocs.2015.11.013
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Mattila, Keijo; Puurtinen, Tuomas; Hyväluoma, Jari; Surmas, Rodrigo; Myllys, Markko; Turpeinen, Tuomas; Robertsén, Fredrik; Westerholm, Jan; Timonen, Jussi
Lehti tai sarja: Journal of Computational Science
ISSN: 1877-7503
eISSN: 1877-7511
Julkaisuvuosi: 2016
Volyymi: 12
Lehden numero: January
Artikkelin sivunumerot: 62–76
Kustantaja: Elsevier B.V.
Julkaisumaa: Alankomaat
Julkaisun kieli: englanti
DOI: https://doi.org/10.1016/j.jocs.2015.11.013
Julkaisun avoin saatavuus: Ei avoin
Julkaisukanavan avoin saatavuus:
Tiivistelmä
Properties of porous materials, abundant both in nature and industry, have broad influences on societies via, e.g. oil recovery, erosion, and propagation of pollutants. The internal structure of many porous materials involves multiple scales which hinders research on the relation between structure and transport properties: typically laboratory experiments cannot distinguish contributions from individual scales while computer simulations cannot capture multiple scales due to limited capabilities. Thus the question arises how large domain sizes can in fact be simulated with modern computers. This question is here addressed using a realistic test case; it is demonstrated that current computing capabilities allow the direct pore-scale simulation of fluid flow in porous materials using system sizes far beyond what has been previously reported. The achieved system sizes allow the closing of some particular scale gaps in, e.g. soil and petroleum rock research. Specifically, a full steady-state fluid flow simulation in a porous material, represented with an unprecedented resolution for the given sample size, is reported: the simulation is executed on a CPU-based supercomputer and the 3D geometry involves 16,3843 lattice cells (around 590 billion of them are pore sites). Using half of this sample in a benchmark simulation on a GPU-based system, a sustained computational performance of 1.77 PFLOPS is observed. These advances expose new opportunities in porous materials research. The implementation techniques here utilized are standard except for the tailored high-performance data layouts as well as the indirect addressing scheme with a low memory overhead and the truly asynchronous data communication scheme in the case of CPU and GPU code versions, respectively.
YSO-asiasanat: läpäisevyys
Vapaat asiasanat: porous material; fluid flow simulation; lattice Boltzmann method; petascale computing; GPU
Liittyvät organisaatiot
Hankkeet, joissa julkaisu on tehty
- SimPhoNy Simulation framework for multi-
- Timonen, Jussi
- Euroopan komissio
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2016
JUFO-taso: 1