A1 Journal article (refereed)
A prospect for computing in porous materials research: Very large fluid flow simulations (2016)

Mattila, K., Puurtinen, T., Hyväluoma, J., Surmas, R., Myllys, M., Turpeinen, T., Robertsén, F., Westerholm, J., & Timonen, J. (2016). A prospect for computing in porous materials research: Very large fluid flow simulations. Journal of Computational Science, 12(January), 62-76. https://doi.org/10.1016/j.jocs.2015.11.013

JYU authors or editors

Publication details

All authors or editors: Mattila, Keijo; Puurtinen, Tuomas; Hyväluoma, Jari; Surmas, Rodrigo; Myllys, Markko; Turpeinen, Tuomas; Robertsén, Fredrik; Westerholm, Jan; Timonen, Jussi

Journal or series: Journal of Computational Science

ISSN: 1877-7503

eISSN: 1877-7511

Publication year: 2016

Volume: 12

Issue number: January

Pages range: 62–76

Publisher: Elsevier B.V.

Publication country: Netherlands

Publication language: English

DOI: https://doi.org/10.1016/j.jocs.2015.11.013

Publication open access: Not open

Publication channel open access:


Properties of porous materials, abundant both in nature and industry, have broad influences on societies via, e.g. oil recovery, erosion, and propagation of pollutants. The internal structure of many porous materials involves multiple scales which hinders research on the relation between structure and transport properties: typically laboratory experiments cannot distinguish contributions from individual scales while computer simulations cannot capture multiple scales due to limited capabilities. Thus the question arises how large domain sizes can in fact be simulated with modern computers. This question is here addressed using a realistic test case; it is demonstrated that current computing capabilities allow the direct pore-scale simulation of fluid flow in porous materials using system sizes far beyond what has been previously reported. The achieved system sizes allow the closing of some particular scale gaps in, e.g. soil and petroleum rock research. Specifically, a full steady-state fluid flow simulation in a porous material, represented with an unprecedented resolution for the given sample size, is reported: the simulation is executed on a CPU-based supercomputer and the 3D geometry involves 16,3843 lattice cells (around 590 billion of them are pore sites). Using half of this sample in a benchmark simulation on a GPU-based system, a sustained computational performance of 1.77 PFLOPS is observed. These advances expose new opportunities in porous materials research. The implementation techniques here utilized are standard except for the tailored high-performance data layouts as well as the indirect addressing scheme with a low memory overhead and the truly asynchronous data communication scheme in the case of CPU and GPU code versions, respectively.

Keywords: permeability

Free keywords: porous material; fluid flow simulation; lattice Boltzmann method; petascale computing; GPU

Contributing organizations

Related projects

Ministry reporting: Yes

Reporting Year: 2016

JUFO rating: 1

Last updated on 2023-06-02 at 16:40