A1 Journal article (refereed)
A conformationally adaptive macrocycle : conformational complexity and host–guest chemistry of zorb[4]arene (2018)


Yang, L.-P., Lu, S.-B., Valkonen, A., Pan, F., Rissanen, K., & Jiang, W. (2018). A conformationally adaptive macrocycle : conformational complexity and host–guest chemistry of zorb[4]arene. Beilstein Journal of Organic Chemistry, 14(2018), 1570-1577. https://doi.org/10.3762/bjoc.14.134


JYU authors or editors


Publication details

All authors or editorsYang, Liu-Pan; Lu, Song-Bo; Valkonen, Arto; Pan, Fangfang; Rissanen, Kari; Jiang, Wei

Journal or seriesBeilstein Journal of Organic Chemistry

ISSN2195-951X

eISSN1860-5397

Publication year2018

Volume14

Issue number2018

Pages range1570-1577

PublisherBeilstein-Institut zur Foerderung der Chemischen Wissenschaften

Publication countryGermany

Publication languageEnglish

DOIhttps://doi.org/10.3762/bjoc.14.134

Publication open accessOpenly available

Publication channel open accessOpen Access channel

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/58829


Abstract

Large amplitude conformational change is one of the features of biomolecular recognition and is also the basis for allosteric effects and signal transduction in functional biological systems. However, synthetic receptors with controllable conformational changes are rare. In this article, we present a thorough study on the host–guest chemistry of a conformationally adaptive macrocycle, namely per-O-ethoxyzorb[4]arene (ZB4). Similar to per-O-ethoxyoxatub[4]arene, ZB4 is capable of accommodating a wide range of organic cations. However, ZB4 does not show large amplitude conformational responses to the electronic substituents on the guests. Instead of a linear free-energy relationship, ZB4 follows a parabolic free-energy relationship. This is explained by invoking the influence of secondary C–H···O hydrogen bonds on the primary cation···π interactions based on the information obtained from four representative crystal structures. In addition, heat capacity changes (ΔCp) and enthalpy–entropy compensation phenomena both indicate that solvent reorganization is also involved during the binding. This research further deepens our understanding on the binding behavior of ZB4 and lays the basis for the construction of stimuli-responsive materials with ZB4 as a major component.


Keywordssupramolecular chemistry

Free keywordsconformations; host-guest chemistry; macrocycles; zorb[4]arene


Contributing organizations


Related projects


Ministry reportingYes

Reporting Year2018

JUFO rating1


Last updated on 2024-08-01 at 19:58