A4 Artikkeli konferenssijulkaisussa
Artificial Decision Maker Driven by PSO : An Approach for Testing Reference Point Based Interactive Methods (2018)
Barba-González, C., Ojalehto, V., García-Nieto, J., Nebro, A. J., Miettinen, K., & Aldana-Montes, J. F. (2018). Artificial Decision Maker Driven by PSO : An Approach for Testing Reference Point Based Interactive Methods. In A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, & D. Whitley (Eds.), Parallel Problem Solving from Nature - PPSN XV : 15th International Conference, Coimbra, Portugal, September 8–12, 2018, Proceedings, Part 1 (pp. 274-285). Springer International Publishing. Lecture Notes in Computer Science, 11101. https://doi.org/10.1007/978-3-319-99253-2_22
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Barba-González, Cristóbal; Ojalehto, Vesa; García-Nieto, José; Nebro, Antonio J.; Miettinen, Kaisa; Aldana-Montes, José F.
Emojulkaisu: Parallel Problem Solving from Nature - PPSN XV : 15th International Conference, Coimbra, Portugal, September 8–12, 2018, Proceedings, Part 1
Emojulkaisun toimittajat: Auger, Anne; Fonseca, Carlos M.; Lourenço, Nuno; Machado, Penousal; Paquete, Luís; Whitley, Darrell
ISBN: 978-3-319-99252-5
Lehti tai sarja: Lecture Notes in Computer Science
ISSN: 0302-9743
eISSN: 1611-3349
Julkaisuvuosi: 2018
Sarjan numero: 11101
Artikkelin sivunumerot: 274-285
Kustantaja: Springer International Publishing
Kustannuspaikka: Cham
Julkaisumaa: Sveitsi
Julkaisun kieli: englanti
DOI: https://doi.org/10.1007/978-3-319-99253-2_22
Julkaisun avoin saatavuus: Ei avoin
Julkaisukanavan avoin saatavuus:
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/59501
Tiivistelmä
Over the years, many interactive multiobjective optimization methods based on a reference point have been proposed. With a reference point, the decision maker indicates desirable objective function values to iteratively direct the solution process. However, when analyzing the performance of these methods, a critical issue is how to systematically involve decision makers. A recent approach to this problem is to replace a decision maker with an artificial one to be able to systematically evaluate and compare reference point based interactive methods in controlled experiments. In this study, a new artificial decision maker is proposed, which reuses the dynamics of particle swarm optimization for guiding the generation of consecutive reference points, hence, replacing the decision maker in preference articulation. We use the artificial decision maker to compare interactive methods. We demonstrate the artificial decision maker using the DTLZ benchmark problems with 3, 5 and 7 objectives to compare R-NSGA-II and WASF-GA as interactive methods. The experimental results show that the proposed artificial decision maker is useful and efficient. It offers an intuitive and flexible mechanism to capture the current context when testing interactive methods for decision making.
YSO-asiasanat: monitavoiteoptimointi; päätöksenteko; optimointi
Vapaat asiasanat: multiobjective optimization; preference articulation; multiple criteria decision making; particle swarm optimization
Liittyvät organisaatiot
Hankkeet, joissa julkaisu on tehty
- Päätöksenteon tuki laskennallisesti vaativille optimointitehtäville
- Miettinen, Kaisa
- Suomen Akatemia
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2018
JUFO-taso: 1