A4 Article in conference proceedings
IRA-EMO : Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization (2019)
Saborido, R., Ruiz, A. B., Luque, M., & Miettinen, K. (2019). IRA-EMO : Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization. In K. Deb, E. Goodman, C. A. C. Coello, K. Klamroth, K. Miettinen, S. Mostaghim, & P. Reed (Eds.), Evolutionary Multi-Criterion Optimization : 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019, Proceedings (pp. 618-630). Springer International Publishing. Lecture Notes in Computer Science, 11411. https://doi.org/10.1007/978-3-030-12598-1_49
JYU authors or editors
Publication details
All authors or editors: Saborido, Rubén; Ruiz, Ana B.; Luque, Mariano; Miettinen, Kaisa
Parent publication: Evolutionary Multi-Criterion Optimization : 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019, Proceedings
Parent publication editors: Deb, Kalyanmoy; Goodman, Erik; Coello, Carlos A. Coello; Klamroth, Kathrin; Miettinen, Kaisa; Mostaghim, Sanaz; Reed, Patrick
ISBN: 978-3-030-12597-4
Journal or series: Lecture Notes in Computer Science
ISSN: 0302-9743
eISSN: 1611-3349
Publication year: 2019
Number in series: 11411
Pages range: 618-630
Number of pages in the book: 757
Publisher: Springer International Publishing
Publication country: Switzerland
Publication language: English
DOI: https://doi.org/10.1007/978-3-030-12598-1_49
Publication open access: Not open
Publication channel open access:
Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/63115
Abstract
We propose a new interactive evolutionary multiobjective optimization method, IRA-EMO. At each iteration, the decision maker (DM) expresses her/his preferences as an interesting interval for objective function values. The DM also specifies the number of representative Pareto optimal solutions in these intervals referred to as regions of interest one wants to study. Finally, a real-life engineering three-objective optimization problem is used to demonstrate how IRA-EMO works in practice for finding the most preferred solution.
Keywords: multi-objective optimisation; preferences
Free keywords: evolutionary multi-objective optimization; reference point; region of interest; interactive methods
Contributing organizations
Related projects
- Decision Support for Computationally Demanding Optimization Problems
- Miettinen, Kaisa
- Academy of Finland
Ministry reporting: Yes
Reporting Year: 2019
JUFO rating: 1