A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Plasmon Excitations in Mixed Metallic Nanoarrays (2019)


Conley, K. M., Nayyar, N., Rossi, T. P., Kuisma, M., Turkowski, V., Puska, M. J., & Rahman, T. S. (2019). Plasmon Excitations in Mixed Metallic Nanoarrays. ACS Nano, 13(5), 5344-5355. https://doi.org/10.1021/acsnano.8b09826


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatConley, Kevin M.; Nayyar, Neha; Rossi, Tuomas P.; Kuisma, Mikael; Turkowski, Volodymyr; Puska, Martti J.; Rahman, Talat S.

Lehti tai sarjaACS Nano

ISSN1936-0851

eISSN1936-086X

Julkaisuvuosi2019

Volyymi13

Lehden numero5

Artikkelin sivunumerot5344-5355

KustantajaAmerican Chemical Society

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1021/acsnano.8b09826

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/64357


Tiivistelmä

Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement of sp-valence electrons and the energy position of d-electrons in the different atomic species and the hybridization between d and sp electrons. It is possible to tune the position of the plasmon resonance, split it into several peaks, and eventually achieve broadband absorption of radiation. Arrays of mixed noble and transition-metal chains may have strongly attenuated plasmonic behavior. The collective nature of the excitations is ascertained using their Kohn-Sham transition contributions. To manipulate the plasmonic response and achieve the desired properties for broad applications, it is vital to understand the origins of these phenomena in atomic chains and their arrays. © 2019 American Chemical Society.


YSO-asiasanatnanorakenteetoptiset ominaisuudettiheysfunktionaaliteoria

Vapaat asiasanatplasmonics; molecular plasmonics; time-dependent density-functional theory; transition contribution maps; collective excitation


Liittyvät organisaatiot

JYU-yksiköt:


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

Raportointivuosi2019

JUFO-taso3


Viimeisin päivitys 2023-03-10 klo 14:41